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Abstract 

The research aimed to address the challenges associated with audio data compression in 

beehive monitoring by exploring the feasibility and effectiveness of using the Free Lossless 

Audio Codec compression format. The contribution is demonstrated by the efficacy of FLAC 

compression in reducing resource consumption without feature loss, thereby not compromising 

AI performance. The methodology involved using FLAC techniques for audio compression, 

extracting relevant acoustic features using Mel-Frequency Cepstral Coefficients, and 

implementing Support Vector Machine models to classify and analyse hive conditions. The 

results demonstrated that Free Lossless Audio Codec outperformed MPEG-1 Audio Layer 3 

and uncompressed Waveform Audio File formats in maintaining the efficiency of audio signals 

and the integrity of critical acoustic features. These metrics include waveform characteristics, 

classifier accuracy, compression degree and speed, and transmission speed through the 

inclusion of multiple data sources. The findings highlight Free Lossless Audio Codec as an 

advantageous option for beehive monitoring systems. Despite the positive findings, the research 

has some limitations. The datasets used in the experiments may not encompass all possible 

beehive conditions and environmental variations. Additionally, the SVM models were 

implemented with specific parameters that may not generalize to all contexts. Further research 

is needed to assess the robustness of the findings across a broader range of conditions and to 

explore different machine learning approaches. 
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Chapter 1. Introduction 

This chapter outlines the background (section 1.1), stating the overall status of beekeeping 

and New Zealand beekeeping, and the context of the research (section 1.2), highlighting the 

focus and problem situation. It then describes the purposes of the study (section 1.3), 

emphasizing the specific aims and objectives. Section 1.4 discusses the significance and scope 

of the research and provides definitions of terms used. Finally, section 1.5 includes an outline 

of the remaining chapters of the thesis, setting the stage for the detailed exploration of the 

research. 

1.1. BACKGROUND 

1.1.1 Overview of Beekeeping Practices Worldwide 

Beekeeping, an ancient practice dating back millennia, plays an essential role in the 

sustainability of agriculture and the preservation of ecological balance. As pollinators, bees are 

pivotal in the propagation of numerous plant species, many of which constitute the primary 

food sources for humans and other animals (V. Patel, Apr. 2020). The global food supply is 

deeply intertwined with the health of bee colonies, as these diligent insects are responsible for 

pollinating about one-third of the food crops we consume. The significance of beekeeping 

extends beyond agricultural yield to encompass biodiversity conservation. Bees contribute to 

the reproduction of wild plants, fostering diverse habitats and ecosystems. This biodiversity in 

turn supports a wide range of fauna, underpinning the resilience of natural systems against 

environmental changes and disturbances (Unep, May 20, 2019). 

In recent years, the beekeeping industry has faced challenges due to environmental threats 

such as habitat loss, climate change, pesticides, and diseases. These challenges have led to a 

decline in bee populations worldwide, a phenomenon that has dire implications for food security 

and ecosystems (Zacepins, 2015). Consequently, there is a heightened need for innovative 

approaches to beekeeping that can support colony health and ensure the continuation of their 

pollination services. 

Given the critical role bees play in our ecosystems and food supply, advancements in 

beekeeping practices are not only beneficial but necessary. The integration of technology, such 

as audio monitoring and data analysis, offers promising avenues to enhance the effectiveness 

of beekeeping. By developing and implementing smart beekeeping tools, we can better 
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understand and protect these vital pollinators, securing the future of our agricultural practices 

and natural biodiversity (Boys, R., 2021). 

1.1.2 Beekeeping in New Zealand 

In New Zealand, beekeeping is a significant industry with 3,508 registered beekeepers 

managing 12,770 apiaries, comprising a total of 194,213 hives. The distribution of these hives 

is uneven across the country, with 57% located in the North Island and 43% in the South Island 

(C. Schmidt, Jan. 2021). The South Island's hives are primarily concentrated to the east of the 

Southern Alps, on the flat coastal plains and downlands where sheep farming is prevalent. The 

North Island, on the other hand, has a more uniform hive distribution, with the highest 

concentration around Hamilton, a major dairy farming region (Cook, 2015). 

New Zealand's honey production, which includes various types like clover, mānuka, and 

honeydew, is significant on a global scale. In 2018, the country produced 20,000 tons of honey, 

with a substantial portion being exported. Mānuka honey, in particular, is renowned for its 

exceptional antibacterial properties, making it highly valuable and sought after internationally 

(Donovan, Nov. 08, 2023). 

Traditional beekeeping in New Zealand, like elsewhere, relies on manual inspections and 

empirical knowledge passed down through generations. However, the limitations of this 

approach in terms of precision and data collection have become apparent, especially in the face 

of modern challenges. Smart beekeeping, which integrates modern technology such as sensors 

and data analytics, offers a way to overcome these limitations. Technologies like temperature, 

humidity, weight, and sound sensors provide real-time data on hive conditions, enabling more 

informed and timely decision-making (Blanc, Simone, Mar. 2018). 

1.2. CONTEXT 

The beekeeping industry is increasingly integrating advanced technologies such as the 

Internet of Things (IoT) and edge computing to enhance the management and monitoring of 

bee colonies (Jukan, Masip-Bruin, & Amla, 2017). Traditional beekeeping methods, which rely 

heavily on manual inspections and experience, are being supplemented and, in some cases, 

replaced by sophisticated digital systems (Blanc, Mar. 2018). IoT devices, including sensors 

and cameras, are now commonly used to collect detailed data on various parameters like hive 

temperature, humidity, weight, and bee activity. This data is crucial for maintaining the health 

and productivity of bee colonies. 
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Edge computing plays a pivotal role in this technological shift by processing data locally 

at or near the source, which reduces latency and bandwidth usage (Wolfert, Ge, Verdouw, & 

Bogaardt, 2017). By analyzing data on-site, beekeepers can receive immediate insights and 

alerts, enabling them to respond swiftly to potential issues such as disease outbreaks, pest 

infestations, or environmental changes. This rapid, local processing is particularly important in 

remote apiaries where internet connectivity may be limited or unreliable (Berckmans, October 

2004). 

To facilitate the effective transmission of data from the field to centralized data centers 

for further analysis, robust communication protocols are essential. These protocols ensure that 

large volumes of data can be transmitted quickly and reliably, providing a continuous flow of 

information that supports both immediate and long-term decision-making processes (Gil-

Lebrero, 2016). 

One of the most significant factors affecting transmission speed is the size of the data 

files. Larger files take longer to transmit, especially over networks with limited bandwidth. 

Therefore, optimizing file size is key to enhancing transmission speed (Schertz Willett, 1995). 

This can be achieved through data compression techniques, efficient data encoding, and 

selective transmission of only the most relevant data. By focusing on reducing file size, the 

beekeeping industry can improve the efficiency of data transmission, ensuring that critical 

information reaches data centers quickly. This, in turn, supports faster data analysis and more 

timely responses to emerging issues within bee colonies, ultimately leading to better hive 

management and increased productivity. 

1.3. PURPOSES 

The primary purpose of this study is to explore the feasibility and effectiveness of using 

the Free Lossless Audio Codec (FLAC) in beehive monitoring systems. The specific aims are 

to evaluate the impact of FLAC compression on the accuracy of machine learning models used 

in the analysis of beehive sounds, compare the performance of FLAC with both uncompressed 

formats (e.g., WAV) and lossy formats (e.g., MP3) in terms of file size, audio quality, and 

computational efficiency, and develop recommendations for the implementation of FLAC in 

practical beehive monitoring systems. The study seeks to answer the following research 

questions: How does FLAC compression affect the fidelity of audio data critical for beehive 

monitoring? What are the trade-offs between file size reduction and audio quality when using 

FLAC compared to other audio formats? Can FLAC provide a practical balance of data quality 



 

Page 12 of 105 

and resource consumption for real-time beehive monitoring applications? By addressing these 

questions, the research aims to contribute to the development of more efficient and effective 

beehive monitoring technologies, thereby supporting better management practices and 

enhancing the sustainability of beekeeping operations. 

1.4. SIGNIFICANCE, SCOPE, AND DEFINITIONS 

1.4.1 Significance 

1.4.1.1 Significance of Research 

The significance of this research lies in its potential to resolve two critical issues in 

beehive monitoring: transmission efficiency and early detection accuracy. By exploring the 

feasibility and effectiveness of using the Free Lossless Audio Codec (FLAC) in beehive 

monitoring systems, this study aims to enhance the transmission of audio data and improve the 

accuracy of detecting early signs of hive distress. The research involves evaluating FLAC's 

impact on machine learning model accuracy, comparing it with uncompressed and lossy 

formats, and developing practical recommendations for its implementation (I. Z. Ochoa, Oct. 

01, 2019). Addressing these challenges can lead to more efficient data handling and more 

precise monitoring of hive health, ultimately supporting better beekeeping management 

practices and contributing to the sustainability of the industry, thereby benefiting the 

beekeeping industry. 

1.4.1.2 Significance of Literature Review 

The literature review encompasses smart beekeeping practices, the current use of audio 

monitoring in beekeeping, and the various data compression techniques utilized in similar 

fields. The review reveals that traditional beekeeping relies heavily on manual inspections and 

empirical knowledge. However, these methods are often insufficient for early detection of 

issues within the hive due to the lack of detailed data. Smart beekeeping practices, which 

incorporate technologies such as sensors and data analytics, provide a modern approach to 

managing hives. These technologies can monitor various parameters such as temperature, 

humidity, weight, and sound within the hive, offering real-time data that supports informed 

decision-making (A. L. Imoize, 3, Aug. 2020). 

Current audio monitoring techniques in beekeeping utilize both uncompressed and lossy 

compressed audio formats. Uncompressed formats like WAV provide high-quality audio but 

result in large file sizes, which are impractical for long-term monitoring and storage. Lossy 

formats like MP3, while reducing file sizes significantly, can introduce distortions that impact 
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the accuracy of audio analysis and machine learning models. The gap in the literature lies in the 

application of lossless compression formats, such as FLAC, in beekeeping. FLAC offers a 

promising balance between file size reduction and audio quality preservation, which is crucial 

for accurate analysis (Israelsson, Jan. 01, 1996). No substantial research currently exists on the 

impact of FLAC compression on the performance of machine learning models in beehive audio 

monitoring. This study aims to fill this gap by evaluating FLAC's feasibility and effectiveness 

in maintaining audio fidelity while providing manageable file sizes. 

1.4.1.3 Significance of Methodology 

The methodology used in this study highlights several key features of FLAC that make it 

particularly valuable for beehive monitoring. Firstly, FLAC's compression speed is very fast, 

even faster than MP3, allowing for quick data processing and transmission. Additionally, while 

FLAC files are smaller than uncompressed WAV files, they do not suffer from any distortion, 

unlike lossy formats such as MP3. This ensures that the audio quality remains intact, which is 

crucial for accurately detecting subtle changes in beehive health. Furthermore, FLAC can 

coordinate effectively with Mel-Frequency Cepstral Coefficients (MFCC) extraction and 

Support Vector Machines (SVM) for detailed analysis. Importantly, FLAC ensures that MFCC 

features are never lost, thereby maintaining the accuracy of the SVM models used for detecting 

beehive health (D. T. Várkonyi, Mar. 2023). By leveraging these advantages, the methodology 

demonstrates that FLAC is a practical and effective tool for monitoring bee colonies, enhancing 

both the efficiency and accuracy of health assessments in beekeeping. 

1.4.1.4 Significance of Experiment 

The experiment conducted in this study holds significant importance in fulfilling the 

research aim of evaluating the feasibility and effectiveness of employing the Free Lossless 

Audio Codec (FLAC) in beehive monitoring systems. By systematically comparing WAV, 

MP3, and FLAC compression formats, the experiment addresses critical aspects related to 

transmission efficiency and accuracy in detecting beehive health. The collection and processing 

of diverse datasets ensure the inclusivity of various scenarios, enhancing the experiment's 

robustness and applicability to real-world settings. Analysing the compression speed of WAV 

to MP3 and FLAC sheds light on the computational efficiency of each format, crucial for 

assessing their practical implementation in real-time monitoring systems. Simulating 

transmission via MQTT enables the evaluation of compression formats' performance in 

communication channels, providing insights into data transfer efficiency—a vital consideration 

for timely monitoring in beekeeping operations. Furthermore, the extraction of Mel-Frequency 
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Cepstral Coefficients (MFCC) ensures consistent feature representation across all compressed 

formats, facilitating accurate analysis and comparison. By applying Support Vector Machines 

(SVM) for classification tasks, the experiment demonstrates the practical implementation of 

machine learning algorithms in beehive monitoring, directly addressing the research aim of 

maintaining detection accuracy. Replicating the experiment across multiple datasets validates 

the robustness of the findings and enhances confidence in the conclusions drawn, highlighting 

the broader applicability of FLAC in diverse beehive monitoring scenarios. Overall, the 

experiment provides crucial evidence for assessing FLAC's suitability in enhancing 

transmission efficiency and maintaining detection accuracy, contributing to advancements in 

beehive monitoring technology. 

1.4.2 Scope 

• Evaluate the Free Lossless Audio Codec for use in beehive monitoring systems. 

• Collect and analyze beehive audio data from different sources. 

• Compare FLAC compression with other formats like WAV and MP3. 

• Apply machine learning models to assess the impact of compression on data accuracy. 

• Develop recommendations for implementing FLAC in practical monitoring systems. 

• Focus solely on audio data compression and analysis, excluding other aspects of 

beekeeping technology such as visual monitoring or chemical analysis. 

1.4.3 Definitions 

Beehive Monitoring: The process of observing and analysing the conditions and activities 

within a beehive to ensure the health and productivity of the bee colony. 

FLAC (Free Lossless Audio Codec): An audio compression format that reduces file size 

without any loss of audio quality, allowing the original data to be perfectly reconstructed from 

the compressed data. 

Lossy Compression: A data compression method that reduces file size by permanently 

eliminating certain information, resulting in a loss of quality that cannot be recovered (Kim B. 

&., 2018 ). 

Lossless Compression: A data compression method that reduces file size without any loss 

of information, allowing the original data to be fully reconstructed from the compressed data 

(Hans, 2001). 
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Machine Learning: A subset of artificial intelligence that involves the development of 

algorithms and statistical models that enable computers to perform tasks without explicit 

instructions, relying instead on patterns and inference. 

1.5. THESIS OUTLINE 

• Chapter 2: Literature Review 

The literature review covers several key areas relevant to the study. It begins with an 

exploration of the historical context of beekeeping and the current challenges facing the 

industry. It then delves into traditional practices and recent technological advancements in 

beehive monitoring. This is followed by an examination of audio data compression techniques, 

comparing different formats such as WAV, MP3, and FLAC. The review also investigates the 

application of machine learning, particularly focusing on MFCC and SVM, in analyzing 

beehive sounds. Finally, it identifies gaps in existing literature, highlighting the underexplored 

use of FLAC in beehive monitoring systems. 

• Chapter 3: Research Design 

This chapter outlines the research design, focusing on the variables, hypotheses, 

instruments, procedures, and ethical considerations. The independent variable is the audio 

compression format, while the dependent variables are classification accuracy and file size. The 

hypotheses examine the impact of audio compression formats on these dependent variables, 

aiming to validate the effectiveness of FLAC compression in preserving classification accuracy 

while reducing file size. The study uses relevant hardware and software tools for audio 

compression and analysis. The procedure and timeline section details the research steps and 

schedule, from data collection to reporting. Finally, the ethics and limitations section addresses 

ethical considerations and acknowledges study limitations. 

• Chapter 4: Methodology 

This chapter details the methodology of our experiment. The independent variable is the 

audio compression format, and the dependent variables are classification accuracy and file size. 

Hypotheses aim to validate FLAC compression's effectiveness in maintaining accuracy while 

reducing size. We discuss FLAC theory for lossless compression, MFCC theory for audio 

feature extraction, and SVM theory for audio classification. The study uses relevant hardware 

and software tools. The procedure and timeline outline the research steps, and the ethics and 

limitations section address ethical considerations and acknowledges study limitations. 
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• Chapter 5: Experiment 

This chapter details the experimental process, including data collection, compression, 

transmission, feature extraction, and classification. We collected audio data and compared 

compression time among three formats using ffmpeg for compression. Transmission times 

were assessed using MQTT protocol. For feature extraction, we utilized MFCC, which is 

crucial for capturing the audio signal's characteristics. The classification accuracy was 

evaluated using an SVM classifier. To ensure robustness, we validated our method with two 

additional datasets, comparing the results across different sources to demonstrate the reliability 

and effectiveness of our approach. 

• Chapter 6: Results 

This chapter presents the results of our experiment. We compare the classification 

accuracy of the three audio formats, providing a detailed classification report, confusion matrix, 

file size and ROC curve for each format. Additionally, we analyze the compression time cost 

and transmission time cost for each format. These results offer a comprehensive evaluation of 

the performance and efficiency of the audio compression and classification methods used in our 

study. 

• Chapter 7: Discussion 

This chapter discusses the implications of the results presented in Chapter 5. We analyze 

the waveform characteristics of the audio data, examining how different compression formats 

affect the audio signal. We also discuss the compression speed and degree, evaluating how 

efficiently each format reduces file size while maintaining audio quality. Additionally, we 

consider transmission speed, exploring the impact of compression on the time required to 

transmit audio data using the MQTT protocol. This discussion provides insights into the trade-

offs between compression efficiency, transmission speed, and classification accuracy. 

• Chapter 8: Conclusion 

Conclusion and Recommendations summarizes the findings of the research, evaluates the 

implications for the beekeeping industry, and discusses the limitations of the study. It also 

provides practical recommendations for implementing FLAC in beehive monitoring systems 

and suggests areas for future research to further enhance beekeeping technologies and practices.  
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Chapter 2. Literature Review 

In this literature review, we embark on a journey through the intricate world of beehive 

monitoring. Our exploration begins with an examination of audio compression techniques, 

seeking efficient methods to handle the rich tapestry of bee-related sounds. As we delve deeper, 

we focus on the unique context of beehive monitoring, where audio compression plays a pivotal 

role. Real-world applications come to life, demonstrating how these compressed audio data 

streams contribute to disease detection, hive health assessment, and environmental monitoring. 

Amidst existing studies, we identify gaps ripe for investigation, setting the stage for our 

hypotheses.  

2.1. AUDIO COMPRESSION TECHNIQUES 

2.1.1 Uncompressed Audio 

Uncompressed audio formats are characterized by their ability to store audio signals 

without any form of compression, preserving the original audio quality exactly as it was 

recorded (Djebbar, F., & Ayad, B., 2017). These formats are used in various professional and 

high-fidelity applications where audio quality is of utmost importance (Polyak, 2021 June). 

2.1.1.1 WAV 

The Waveform Audio File Format (WAV), a standard for audio file storage on computers, 

is integral to various fields such as digital audio processing, multimedia applications, and 

broadcasting. Established by Microsoft and IBM, WAV files are known for their quality and 

versatility, though they come with trade-offs in terms of file size. The WAV format was 

developed in 1991 as part of the Resource Interchange File Format (RIFF), designed to store 

data in tagged chunks (Microsoft, 1991). This format became the cornerstone for audio file 

storage, particularly on Windows platforms, due to its compatibility and simplicity. 

Technical Specifications 

WAV files store audio data in an uncompressed format, typically using the Linear Pulse 

Code Modulation (LPCM) method. This ensures high fidelity by preserving the audio's original 

waveform (Pohlmann, 2011).The primary advantage of this uncompressed format is the 

retention of audio quality, making WAV files suitable for professional audio applications. 
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However, the trade-off is a larger file size compared to compressed formats like MP3 or AAC 

(Spanias, A., & Atti, V. , 2010). WAV files are extensively used in professional audio recording 

and editing, sound design, and broadcasting. Their uncompressed nature allows for easy editing 

and high-quality audio reproduction, which is essential for professional work (Watkinson, 

2013). Furthermore, many software applications and digital audio workstations (DAWs) 

support WAV files natively, enhancing their utility in professional settings (Mulyadi, Y., & 

Daryana, H. A., 2021). 

Applications and Usage 

i. Professional Audio Production 

In professional audio production, WAV files are indispensable due to their high quality 

and versatility (Djebbar, F., & Ayad, B., 2017). Audio engineers and producers rely on WAV 

files throughout the entire production process, from initial recording to final mastering. 

During recording sessions in studios, WAV files are used to capture high-fidelity audio. 

The format's support for various sample rates and bit depths allows for the detailed capture of 

sound, accommodating everything from standard CD-quality (16-bit/44.1 kHz) to high-

resolution audio (24-bit/96 kHz and beyond) (Frantiska Jr, 2008). This high-quality capture is 

essential for ensuring that the recording accurately reflects the performance and nuances of the 

audio source (KARAGIANNIS, 2000). 

ii. Sound Design 

WAV files are essential in sound design for movies, television, video games, and other 

multimedia applications. Sound designers use WAV files to create, manipulate, and integrate 

sound effects with high precision and fidelity. In film and television production, sound 

designers use WAV files to produce and integrate sound effects, dialogue, and background 

scores (Griffin, 2016). The high resolution and uncompressed quality of WAV files allow for 

precise synchronization with visual elements, ensuring that every sound detail enhances the 

viewer's experience (Sharma, 2022). For instance, sound effects like explosions, footsteps, and 

ambient noises can be meticulously crafted and placed in the audio track to match the on-screen 

action perfectly. 

iii. Scientific Research 

Uncompressed audio formats like WAV are extensively used in AI and machine learning 

for training and testing purposes. The high-quality, unaltered audio data ensures that algorithms 
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receive the most accurate input possible, which is crucial for developing sophisticated models 

for speech recognition, audio analysis, and other AI applications (Jaganmohan, 2023). 

In the realm of speech recognition, WAV files play a critical role. These files provide the 

purest form of audio, free from any compression artifacts that might distort the sound. When 

developing speech recognition systems, it is essential to have clear and accurate audio data so 

that the models can learn the nuances of human speech, including different accents, intonations, 

and speaking speeds (Herrmann, 2023). By using WAV files, researchers and developers can 

ensure that their training data reflects the true characteristics of spoken language, leading to 

more robust and accurate speech recognition systems (Zheng G. X., 2021). 

Audio analysis, another key area in AI, also benefits from the use of WAV files. Tasks 

such as sound classification, event detection, and audio segmentation require high-quality audio 

inputs to accurately identify and classify sounds (Gupta, 2017). For instance, in environmental 

sound classification, models are trained to distinguish between different types of sounds like 

traffic noise, bird songs, or machinery sounds (Cristia, 2021). The uncompressed nature of 

WAV files ensures that the subtle details and characteristics of these sounds are preserved, 

enabling the models to learn and perform more effectively. 

Advantages and Limitations 

The primary advantage of WAV files is their superior audio quality. This is particularly 

important in professional settings where audio fidelity cannot be compromised. Additionally, 

the straightforward structure of WAV files makes them easy to process and manipulate (Bosi, 

M., & Goldberg, R. E. , 2002). However, the large file size can be a significant limitation, 

particularly for storage and transmission over networks with limited bandwidth. 

Recent Developments and Future Directions 

Recent advancements in storage technology and bandwidth have somewhat mitigated the 

drawbacks of WAV files' large size (Rashidinejad, 2013 ). Additionally, new developments in 

audio compression algorithms continue to improve the balance between quality and file size. 

The ongoing evolution of digital audio technologies ensures that WAV files remain relevant, 

particularly in professional and archival contexts (Brandenburg, 2010). 

The Waveform Audio File Format remains a critical component of digital audio 

technology, balancing quality and ease of use against file size. Its enduring relevance in 

professional audio underscores the importance of maintaining high-fidelity audio storage 

formats in an increasingly compressed digital world (Liu, 2011 ). 
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2.1.2 Lossy Compression 

Lossy compression techniques are used to reduce the file size of audio data by removing 

parts of the sound that are less audible to human ears (Kim, B., & Rafii, Z, 2018, September). 

This process results in a significant reduction in file size with some loss of audio quality. One 

of the most common lossy compression formats is MP3. 

2.1.2.1 MP3 

The MP3 format, or MPEG-1 Audio Layer 3, is one of the most popular lossy audio 

compression formats. Developed by the Moving Picture Experts Group (MPEG), MP3 

revolutionized the way audio data is stored and transmitted, making digital audio more 

accessible and portable (Brandenburg, 2010). MP3 compression works by using a perceptual 

audio coding method that reduces the accuracy of certain sound components that are less 

perceptible to human hearing. This method exploits the limitations of human auditory 

perception to achieve high compression rates while maintaining acceptable audio quality 

(Spanias, A., & Atti, V. , 2010).  

Technical Specifications 

The MP3 format, or MPEG-1 Audio Layer 3, revolutionized digital audio storage and 

transmission with its efficient lossy compression method developed by the Moving Picture 

Experts Group (MPEG) (Brandenburg, 2010). MP3 compression, based on psychoacoustic 

principles, selectively removes inaudible frequencies and masked sounds, achieving 

compression ratios of about 10:1 compared to uncompressed WAV files while maintaining 

acceptable audio quality. It supports a wide range of bit rates (typically from 32 kbps to 320 

kbps), sampling rates (including 32 kHz, 44.1 kHz, and 48 kHz), and channels (mono, stereo, 

joint stereo, and dual channel modes), providing flexibility for various audio applications 

(McCandless, 1999). MP3 files use a frame-based structure with headers containing encoding 

parameters, allowing for variable bit rate (VBR) encoding to optimize quality and file size 

balance. Additionally, MP3 files often include metadata in ID3 tags for organizing and 

managing digital music libraries (Egidi, 2005). While MP3 provides efficient compression, it 

sacrifices some error resilience compared to lossless formats, making it susceptible to quality 

loss from corruption or transmission errors. 

Applications and Usage 

MP3 became widely popular due to its balance between sound quality and file size, which 

facilitated the sharing and distribution of music over the internet. It played a crucial role in the 
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rise of digital music distribution and streaming services (Kozamernik, 2002). MP3 files are 

supported by virtually all digital audio players and software, making them extremely versatile 

and user-friendly. 

i. Music Distribution 

The MP3 format significantly impacted the music industry by enabling the easy and 

efficient distribution of music online. Services like Napster, iTunes, and later streaming 

platforms such as Spotify and Apple Music, owe their success in part to the MP3 format. These 

platforms allowed users to download or stream high-quality music files without requiring 

extensive storage space, leading to the widespread adoption of digital music (Kozamernik, 

2002). MP3 files made it possible for users to create extensive personal music collections on 

their computers and portable devices (Beckman, 2006). This shift was a departure from physical 

media such as CDs and vinyl records, allowing users to store thousands of songs in a fraction 

of the space. The convenience of carrying a vast music library on devices like iPods, 

smartphones, and MP3 players contributed to the format's popularity (Manning, 2013). 

ii. Professional Recording and Editing 

In the professional realm, MP3 files are commonly used for distributing preliminary 

mixes and demos due to their manageable size and decent audio quality. Although 

uncompressed formats like WAV are preferred for recording and mastering, MP3 files provide 

a practical solution for sharing audio files quickly and efficiently among collaborators and 

clients (Pohlmann, 2011). The MP3 format has also become the standard for podcasts and 

audiobooks. Its compression capabilities make it ideal for long-form audio content, which can 

be downloaded or streamed with ease. The format's ubiquity ensures compatibility with a wide 

range of playback devices, from computers to dedicated audiobook readers and smart speakers 

(Berry, 2006). 

iii. Data Storage and Transmission 

MP3's efficient compression allows for significant savings in storage space and 

bandwidth. This is particularly beneficial for online content delivery, where storage costs and 

data transfer limits are critical considerations (Li, 2010, July). Websites and online platforms 

can host large libraries of audio content without incurring excessive costs, making the MP3 

format an economic choice for many content providers (Spanias, A., & Atti, V. , 2010). While 

not typically used for archival purposes due to its lossy nature, MP3 files still find a place in 

various research and educational contexts. Their small size makes them suitable for use in 
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databases and digital archives where space constraints exist, although higher quality formats 

are preferred for preserving the integrity of original recordings (Burkart, 2008). 

Advantages and Limitations 

The main advantage of MP3 is its ability to compress audio files to a fraction of their 

original size while retaining a level of quality that is generally satisfactory for most listeners. 

This makes it ideal for use in portable devices and streaming over the internet where bandwidth 

and storage space are limited (Brandenburg, 2010). However, the lossy nature of MP3 means 

that some audio quality is inevitably sacrificed, which may not be acceptable for high-fidelity 

audio applications (D'Alessandro, 2009, September). 

Recent Developments and Future Directions 

Although newer audio codecs such as AAC (Advanced Audio Coding) and OGG Vorbis 

have emerged, offering better sound quality at similar or lower bitrates, MP3 remains widely 

used due to its established infrastructure and compatibility (Bosi, M., & Goldberg, R. E. , 2002). 

The ongoing challenge is to continue improving audio compression techniques to balance 

quality, file size, and compatibility. 

2.1.2.2 AAC 

AAC uses a more advanced compression algorithm compared to MP3, which includes 

techniques such as temporal noise shaping, backward adaptive linear prediction, and increased 

flexibility in joint stereo coding. These techniques allow AAC to achieve higher efficiency and 

better sound quality at lower bitrates (Bosi, M., & Goldberg, R. E. , 2002). AAC supports 

sample rates from 8 kHz to 96 kHz, up to 48 channels, and provides more flexibility for future 

developments. 

Technical Specifications 

AAC uses a more advanced compression algorithm compared to MP3, resulting in better 

audio quality for a given bit rate. It utilizes techniques such as spectral band replication (SBR) 

and perceptual noise shaping (PNS) to achieve higher compression efficiency while preserving 

audio fidelity (Brandenburg, 2010). Unlike MP3, AAC supports a wider range of bit rates, 

sampling rates, and channel configurations, providing greater flexibility for different audio 

applications. Common bit rates for AAC encoding range from 64 kbps to 320 kbps, with higher 

rates offering better sound quality but larger file sizes. AAC also supports various sampling 

rates, including 8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz, and 48 kHz, catering to different audio 

recording and playback requirements (Wolters, 2003, October). Additionally, AAC supports up 
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to 48 audio channels, allowing for multichannel audio encoding for immersive surround sound 

experiences (Gunawan, 2017 ). 

Applications and Usage 

AAC is widely used in various applications due to its superior audio quality and efficient 

compression. It complements MP3 by providing enhanced audio experiences in many modern 

applications. 

i. Broadcasting 

AAC is extensively used in digital radio broadcasting. For instance, it is part of the Digital 

Radio Mondiale (DRM) and HD Radio standards, which require high-quality audio at low 

bitrates for efficient broadcasting. Its adoption in broadcasting ensures that listeners experience 

high-fidelity audio even at low signal strengths (Ibraheem, 2017). 

ii. Video Streaming 

AAC is also a standard audio format for video streaming platforms such as Netflix, Hulu, 

and YouTube. Its ability to deliver high-quality audio with efficient compression makes it ideal 

for video content, where it is often paired with video codecs like H.264 or H.265 (Kalampogia, 

2017). This combination ensures that users experience high-quality audio and video without 

excessive buffering or data consumption. 

iii. Mobile Devices 

AAC is the preferred audio format for many mobile devices, including smartphones, 

tablets, and portable media players. Its efficient compression ensures that users can store more 

audio content on their devices without sacrificing quality (Fiannaca, 2017). Additionally, AAC 

is widely supported across various operating systems and playback software, enhancing its 

versatility. 

iv. Gaming 

The gaming industry also benefits from AAC’s capabilities. Modern video game consoles 

and PC games use AAC for in-game audio and streaming services like Twitch and YouTube 

Gaming, ensuring that gamers experience high-quality sound with minimal impact on 

performance and bandwidth (Boyd, 2017). 
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Advantages and Limitations 

The primary advantage of AAC is its improved sound quality at lower bitrates compared 

to MP3. This makes it ideal for applications where bandwidth and storage space are at a 

premium (Takag, K., & Takishima, Y., 2007 July). However, despite its advantages, AAC has 

not completely replaced MP3, partly due to MP3's entrenched position and widespread 

compatibility. Additionally, some older devices and software may not support AAC, limiting 

its usability in certain contexts (Higginbotham, D. Jeffery, et al., 2007). 

Recent Developments and Future Directions 

Recent developments in AAC technology have focused on further improving audio 

quality, compression efficiency, and compatibility with emerging audio technologies. One 

significant advancement is the introduction of High-Efficiency AAC (HE-AAC), also known 

as AAC+, which combines AAC with spectral band replication (SBR) to achieve even higher 

compression ratios without sacrificing audio quality (Deshmukh, Soham, et al., 2024). HE-

AAC is particularly well-suited for streaming applications, where bandwidth efficiency is 

crucial for delivering high-quality audio over limited network connections. 

Looking ahead, future directions for AAC technology include exploring new compression 

techniques, such as machine learning-based approaches, to further enhance audio quality and 

compression efficiency. Additionally, ongoing standardization efforts aim to extend AAC's 

capabilities for emerging audio formats and delivery platforms, ensuring its relevance and 

compatibility in the evolving landscape of digital audio (ISO/IEC, 2020). With continued 

innovation and collaboration across the audio industry, AAC is poised to remain a cornerstone 

of digital audio compression for years to come (Vogel, 2024). 

2.1.2.3 Opus 

Opus is an advanced lossy audio compression format that has gained significant 

popularity for its versatility and high-quality audio output. Developed by the Internet 

Engineering Task Force (IETF), Opus is designed to handle a wide range of audio applications, 

from low-latency voice communication to high-fidelity music streaming. 

Technical Specifications 

Opus combines the strengths of two existing codecs: SILK, used primarily for voice 

encoding, and CELT, designed for high-quality audio. By integrating these codecs, Opus 

achieves exceptional efficiency and adaptability, capable of providing high audio quality across 

various bitrates and conditions (Han, 2014). Opus supports bitrates from 6 kbps to 510 kbps, 
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sample rates from 8 kHz to 48 kHz, and frame sizes from 2.5 ms to 60 ms, making it highly 

versatile for different audio needs. 

One of the defining features of Opus is its ability to seamlessly switch between SILK and 

CELT modes or combine them, depending on the requirements of the audio being processed 

(DeCambra, Weston. , 2024). This flexibility allows Opus to optimize for different types of 

audio content and network conditions, ensuring optimal performance. Opus is particularly well-

suited for real-time applications due to its low-latency capabilities. With a minimum 

algorithmic delay of just 5 ms, Opus can deliver near-instantaneous audio transmission, making 

it ideal for voice and video calls, live streaming, and interactive applications (Skoglund, Jan, 

and Jean-Marc Valin, 2019). 

Applications and Usage 

Opus's versatility makes it a preferred choice for a broad range of audio applications, from 

voice over IP (VoIP) and video conferencing to music streaming and gaming. 

i. Voice Communication 

Opus is widely adopted in voice communication platforms, including VoIP services like 

Skype, Discord, and WhatsApp. Its ability to provide high-quality audio at low bitrates, 

combined with its low-latency performance, ensures clear and reliable voice communication 

even under varying network conditions (Vos, 2012). 

ii. Video Conferencing 

In video conferencing, Opus enhances the overall experience by delivering clear and 

synchronized audio. Platforms such as Zoom and Google Meet use Opus to ensure that 

participants can communicate effectively, regardless of bandwidth fluctuations (Maruschke, 

Michael, et al., 2015 September). Opus is a standard codec in Web Real-Time Communication 

(WebRTC) applications, which are used for peer-to-peer communication over the web. 

WebRTC enables developers to build applications such as video chat, file sharing, and live 

streaming directly into web browsers, with Opus ensuring high-quality audio transmission 

(Suciu, 2020). 

iii. Music Streaming 

Opus is also used in music streaming services like Spotify, where its efficient 

compression and high audio quality improve the listening experience while minimizing data 
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usage. The codec's flexibility allows it to adapt to different streaming qualities, providing a 

consistent experience across various devices and network conditions (Valin, 2016). 

Advantages and Limitations 

Opus offers several advantages, including superior audio quality at various bitrates, low-

latency performance, and flexibility across different audio applications. Its open-source nature 

and royalty-free licensing make it an attractive choice for developers and companies looking to 

integrate high-quality audio into their products (Skoglund, Jan, and Jean-Marc Valin, 2019). 

However, despite its many advantages, Opus is not as widely supported as more 

established formats like MP3 and AAC. Some older devices and software may not be 

compatible with Opus, limiting its usability in certain contexts. Additionally, while Opus is 

highly efficient, it may not always match the compression ratios of specialized codecs for very 

low-bitrate applications (Kaul, 2019). 

Recent Developments and Future Directions 

Opus continues to evolve, with ongoing improvements aimed at enhancing its 

performance and extending its capabilities. Recent updates have focused on optimizing the 

codec for better speech and music quality, as well as improving its efficiency for streaming and 

real-time communication applications. Future developments may include further refinements 

to the codec's adaptability and support for emerging audio technologies (Lin, 2024). 

2.1.3 Lossless Compression 

Lossless compression techniques are used to reduce the file size of audio data without 

any loss of information, ensuring that the original audio can be perfectly reconstructed from the 

compressed data (Deepu, 2017). This makes lossless formats ideal for applications where audio 

fidelity is paramount. Two widely used lossless compression formats are ALAC and FLAC. 

2.1.3.1 ALAC 

Apple Lossless Audio Codec (ALAC) is a lossless audio compression format developed 

by Apple Inc. It is designed to reduce the file size of audio tracks without compromising quality, 

making it particularly suitable for use within the Apple ecosystem. 

Technical Specifications 

ALAC works by using linear prediction, a method that models audio signals as a linear 

combination of their past samples. This allows ALAC to achieve compression ratios typically 

between 40% to 60% of the original file size, depending on the complexity of the audio content 
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(Sushkov, 2023 ). The codec supports various sample rates and bit depths, providing flexibility 

for different audio qualities and file sizes (Apple Inc., 2011). 

Applications and Usage 

ALAC is primarily used within Apple's ecosystem, including iTunes, iOS devices, and 

macOS. It is the preferred format for users who want to maintain high audio quality without the 

large file sizes associated with uncompressed formats like WAV or AIFF. 

i. Music Libraries 

ALAC is commonly used by audiophiles and music enthusiasts who manage their music 

libraries through iTunes or Apple Music. The format ensures that users can enjoy high-fidelity 

audio while saving storage space on their devices (Nanabeka, 2017). 

ii. Professional Audio Work 

In professional audio environments, ALAC is used for archiving and distributing high-

quality audio files. Its lossless nature ensures that audio engineers and producers can work with 

exact replicas of original recordings, which is crucial for tasks such as mixing and mastering 

(Dittmar, 2017.). 

iii. Streaming Services 

Apple Music supports ALAC for streaming lossless audio to users. This provides an 

enhanced listening experience compared to lossy formats, catering to users who demand the 

highest audio quality (Williams, 2022). 

Advantages and Limitations 

The main advantage of ALAC is its ability to provide high-quality audio without the large 

file sizes of uncompressed formats. It also benefits from seamless integration within Apple's 

ecosystem, ensuring compatibility across various Apple devices and software (Plummer, 

(2014)). However, ALAC is not as widely supported outside of Apple's ecosystem, which can 

limit its usability with non-Apple devices and applications. 

Recent Developments and Future Directions 

Recent developments in Apple Lossless Audio Codec (ALAC) technology have primarily 

focused on enhancing compatibility, improving efficiency, and expanding its adoption across 

various platforms and devices (Porter, Alastair, et al., 2015 Oct ). One notable development is 

the increased integration of ALAC support into third-party software and hardware products, 
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enabling users to enjoy high-quality lossless audio playback across a broader range of 

ecosystems (Apple Inc., 2011). 

Apple has also continued to refine the ALAC codec to optimize its performance and 

efficiency, particularly in the context of streaming and online distribution. With the growing 

popularity of high-resolution audio streaming services, there has been a concerted effort to 

ensure that ALAC remains a viable option for delivering pristine audio quality over the internet 

(Apple Inc., 2011). 

2.1.3.2 FLAC 

Free Lossless Audio Codec (FLAC) is a widely used open-source format known for its 

ability to compress audio files without any loss of quality. Developed by the Xiph.Org 

Foundation (Železnik, 2020), FLAC is popular among audiophiles, professionals, and music 

enthusiasts who prioritize high audio fidelity and versatile compatibility. 

Technical Specifications 

FLAC employs linear prediction and residual coding to achieve its lossless compression. 

This method allows the codec to reduce file sizes by about 50% to 70%, depending on the 

complexity of the audio (Fang, 2009). The format supports a range of sample rates from 1 Hz 

to 655,350 Hz and bit depths from 4 to 32 bits per sample, ensuring flexibility and high-quality 

reproduction for various audio types (Firmansah, 2016). FLAC works by analyzing the audio 

data and identifying patterns that can be efficiently encoded. It uses a combination of predictive 

coding and entropy coding to compress the audio data without losing any information. The 

process involves breaking down the audio signal into blocks, applying linear prediction to 

model the signal, and then encoding the residual difference between the predicted and actual 

signal using entropy coding (Ye J. K., 2010, October). 

Applications and Usage 

FLAC's lossless compression and open-source nature make it ideal for a wide range of 

applications, from personal music libraries to professional audio production. 

i. Personal Music Collections 

Many audiophiles prefer FLAC for managing their personal music collections due to its 

superior sound quality and open-source license. FLAC files are compatible with numerous 

media players, operating systems, and devices, making it easy for users to organize and enjoy 

their music without compromising on quality (Sáenz López, 2022). The format's support for 
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metadata tagging allows users to store rich information about their music, such as artist, album, 

and track details, enhancing the overall listening experience. In professional audio 

environments, FLAC is used for recording, editing, and archiving high-quality audio. Its 

lossless nature ensures that audio professionals can work with exact replicas of original 

recordings, which is crucial for tasks such as mixing, mastering, and restoration (Kumar, 2014). 

The format's ability to handle high-resolution audio makes it a preferred choice for preserving 

the integrity of original recordings. 

ii. Recording and Editing 

FLAC is often used during the recording and editing phases in professional studios. It 

allows sound engineers to capture and manipulate audio without worrying about data loss, 

ensuring that the final product retains the highest possible quality (Jackson, 2015). For 

archiving purposes, FLAC's lossless compression is invaluable. It provides a space-efficient 

way to store audio recordings without compromising their fidelity, making it ideal for 

preserving historical audio recordings and valuable sound archives (Kromer, 2017). 

iii. Music Distribution 

Artists and record labels frequently use FLAC to distribute music to ensure listeners 

receive the highest quality audio. Online music stores and distribution platforms such as 

Bandcamp, HDtracks, and Tidal offer FLAC downloads and streams for users who demand 

lossless audio (Cho, 2007, July). The format's open-source nature and royalty-free licensing 

encourage widespread adoption among distributors and consumers alike. Many online music 

stores offer FLAC as an option for downloading high-quality audio. This ensures that 

consumers have access to the best possible sound quality for their purchases, catering to the 

demands of audiophiles and music enthusiasts (Rivero, 2008). Streaming services that focus on 

high-fidelity audio, such as Tidal and Qobuz, use FLAC to deliver lossless streams. This allows 

subscribers to enjoy studio-quality sound, making FLAC a key component in the competitive 

landscape of premium audio streaming (Sisario, 2019). 

iv. Data Analysis Application 

Jin and Kim (Jin, R., & Kim, J., 2014) proposed a method for recovering FLAC music 

files downloaded via BitTorrent by decoding split FLAC files, as detailed in their paper 

"Analysis of FLAC Music Pieces Recovery." The recovery process involves obtaining complete 

frames from partial FLAC files and adding temporary headers to facilitate decoding, achieving 

a success rate of over 90%. The study addresses the challenges posed by BitTorrent, a popular 
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P2P file-sharing protocol that often results in the distribution of FLAC files in fragmented 

pieces, complicating the extraction of essential metadata for copyright protection (Hawa, 2012). 

FLAC, or Free Lossless Audio Codec, compresses audio without any loss of information, 

typically reducing file sizes by 50-60%. The basic structure of a FLAC file includes a 

mandatory STREAMINFO block and audio frames (Ye H. a., 2018 ). The authors' proposed 

method involves adding a temporary header to facilitate the decoding of these fragmented 

FLAC files. In their experiments with 360 pop songs, they demonstrated a decoding success 

rate exceeding 90% for piece sizes ranging from 128KB to 16MB (Jin, 2014). Additionally, the 

study explores the extraction of musical features such as zero-crossing rate, signal energy, and 

pitch using methods like FFT-based spectrum analysis (Ye J. K., 2010, October). Tonality 

analysis is performed using chromogram, which maps frequency data to pitch classes, aiding in 

the identification of audio. The results indicate that the decoding and identification success rates 

improve with larger piece sizes, with piece sizes above 1MB showing stable and high success 

rates. This method effectively recovers and identifies FLAC audio files distributed via 

BitTorrent, aiding in tracking illegal content without needing the complete file, thus having 

significant implications for digital copyright protection (Kim H. , 2017). 

Advantages and Limitations 

FLAC offers numerous advantages that make it ideal for high-fidelity audio applications. 

Its lossless compression ensures the original audio quality is preserved, providing an excellent 

solution for audiophiles and professionals who require the highest sound fidelity. As an open-

source and royalty-free format, FLAC encourages widespread use and support across various 

platforms, with no licensing fees (Koller, 1999, September). This broad compatibility is a 

significant benefit, as FLAC is supported by many media players, devices, and operating 

systems, ensuring its usability across different contexts. Additionally, FLAC provides efficient 

compression, significantly reducing file sizes without any loss of quality, thereby balancing 

storage needs and maintaining audio fidelity (Gunawan, 2017 ). 

However, FLAC files are generally larger than lossy formats like MP3 or AAC, which 

can be a drawback for users with limited storage space or bandwidth. Additionally, while FLAC 

is widely supported, there are still some older devices and software that may not be compatible 

with the format (Fang, 2009). 

 

 



 

Page 31 of 105 

Recent Developments and Future Directions 

FLAC continues to evolve, with ongoing improvements aimed at enhancing its 

performance and expanding its capabilities. Recent updates have focused on optimizing the 

codec for better compression efficiency and improving support for high-resolution audio 

(Debnath, 2024). Future developments may include further enhancements to the codec's 

adaptability and integration with emerging audio technologies. FLAC is also used in various 

research and development contexts where high-quality audio is essential. Researchers working 

on audio compression algorithms, acoustic analysis, and audio processing often use FLAC to 

ensure that their work is based on accurate and unaltered audio data (Vernyi, 2024). 

2.2. AUDIO COMPRESSION IN BEEHIVE MONITORING 

2.2.1 Importance of Audio Data in Beehive Monitoring 

Beehive monitoring has become an essential aspect of modern apiculture, leveraging 

technological advancements to ensure the health and productivity of bee colonies (Qandour, 

Amro, et al., 2014). One of the most valuable data types collected in this context is audio data. 

The significance of audio data in beehive monitoring is multifaceted, providing insights into 

the colony's health, behaviour, and environmental conditions. 

2.2.1.1. Health Monitoring 

Audio data allows beekeepers to monitor the health of the hive by analyzing the sounds 

produced by bees. Healthy bees produce a distinct buzzing sound that can change when they 

are stressed, sick, or experiencing environmental issue. Specific audio signatures can indicate 

the presence of diseases, pests, or other health problems within the hive. For instance, the sound 

patterns can help detect the presence of the Varroa destructor mite, which is known to alter the 

acoustic environment of a hive (Ferrari, S., Silva, M., Guarino, M., & Berckmans, D, 2008).  

A critical aspect of health monitoring through audio data is assessing the status of the queen 

bee. The queen’s presence and health are vital for colony stability, as she is responsible for 

laying eggs and producing pheromones that regulate the hive’s activities. Changes in the audio 

patterns can indicate the queen’s health status or her absence, which requires immediate 

attention (Ali et al., 2021, November). Piping and tooting are specific sounds associated with 

queen bees. Piping is a high-pitched sound made by virgin queens, often signalling their 

presence to worker bees and other queens. Tooting is a response from other queens or worker 

bees. These sounds are crucial for maintaining the social hierarchy within the hive and 
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preventing conflicts. The presence of piping and tooting can indicate the process of queen 

replacement or the presence of multiple queens (Yang, M. D., & Su, T. C., 2008).  

Besides queen bee sound, normal bee sounds also provide a wealth of information about the 

health, behaviour, and environment of a bee colony. By continuously monitoring these sounds, 

beekeepers can maintain the well-being of their hives and ensure the productivity and 

sustainability of their colonies. The integration of audio monitoring with advanced analytical 

tools enhances the ability to detect and respond to issues promptly, making it a valuable 

component of modern beekeeping practices (Blut, 2017). 

2.2.1.2. Behavioural Insights 

The behaviour of bees, including activities such as foraging, swarming, and 

communication, can be effectively monitored through audio recordings. Bees communicate 

through a variety of sounds, including vibrations and buzzing. By analysing these sounds, 

researchers and beekeepers can gain insights into the hive's internal activities and predict 

behaviours such as swarming, which is critical for colony management and prevention of 

colony loss (Rustam, 2024). 

Bee sounds are integral to understanding various behaviours within a hive, making them 

valuable for effective beehive monitoring. Different sounds correspond to specific activities 

such as foraging, swarming, queen events, colony defence, temperature regulation, and brood 

care (Zaman, A., & Dorin, A., 2023). For example, the intensity and frequency of buzzing can 

indicate foraging levels or the presence of swarming, while specific queen sounds signal queen 

replacement or swarming events (Banharnsakun, 2019). Defensive sounds highlight potential 

threats, and temperature regulation buzzes reflect hive conditions. By analysing these acoustic 

signals, beekeepers gain real-time insights into the hive’s health and activities, enabling 

proactive management and timely interventions to ensure colony stability and productivity. 

This non-invasive monitoring method enhances beekeeping practices and contributes to the 

overall health of bee colonies (Hall, 2023). 

2.2.1.3. Environmental Monitoring 

Audio data provides crucial insights into the environmental conditions within and around 

the hive, significantly impacting bee activity and health. Changes in the hive’s acoustic 

environment can indicate alterations in temperature, humidity, and other environmental factors 

(Cecchi, 2020). For instance, the buzz frequency of bees can change with temperature 

fluctuations, as bees fan their wings to cool the hive during hot weather or generate heat during 
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colder periods. These temperature-related sounds allow beekeepers to infer whether the hive's 

internal environment remains within optimal ranges, ensuring that the bees are neither 

overheating nor freezing (Kridi, 2016). 

Humidity levels also influence bee behaviour and hive acoustics. High humidity can 

affect the bees' ability to maintain hive conditions, leading to increased buzzing as they work 

harder to regulate the internal environment (Gil-Lebrero e. a., 2016). Conversely, low humidity 

might alter their feeding and brood-rearing activities, impacting colony health and productivity. 

By monitoring these acoustic signals, beekeepers can take necessary actions to maintain 

appropriate humidity levels, such as providing additional water sources or improving hive 

ventilation. (Tashakkori, 2021) 

Additionally, audio data can reveal the presence of intruders or disturbances. A sudden 

spike in noise levels might indicate an animal or human intruder, prompting immediate action 

from the beekeeper to protect the hive. Persistent, high-pitched buzzing could also signal stress 

or discomfort among the bees, possibly due to environmental stressors like pesticide exposure 

or nearby construction activities (Murphy, 2015. June). 

2.3. PRACTICAL APPLICATIONS OF BEEHIVE MONITOR  

Beehive monitoring has evolved significantly with the advent of modern technologies, 

transforming traditional beekeeping practices. The integration of IoT (Internet of Things) and 

edge computing has facilitated real-time monitoring and management of beehives, allowing 

beekeepers to remotely oversee hive conditions and bee behaviour with unprecedented accuracy 

and convenience. 

2.3.1 Basic Infrastructure 

The basic infrastructure for modern beehive monitoring systems often includes IoT 

devices equipped with various sensors and audio recording capabilities. These devices collect 

data on hive temperature, humidity, and audio signals. Edge computing plays a crucial role in 

processing this data locally at the hive site, reducing the latency and bandwidth requirements 

associated with transmitting large volumes of raw data to a central server. This setup ensures 

that critical data is analyzed promptly, enabling swift responses to any issues that may arise 

within the hive (Tashakkori, 2021). 

Efficient audio data transmission is essential for continuous monitoring. IoT-enabled 

beehive monitors typically employ wireless communication protocols such as Zigbee, Wi-Fi, 
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or LoRaWAN to send data from the hive to a central hub (Kontogiannis, 2019). From there, 

data can be transmitted to cloud-based servers for long-term storage and more in-depth analysis. 

The challenge here lies in maintaining a balance between data fidelity and transmission 

efficiency, particularly in remote locations where network connectivity might be limited 

(Tashakkori, 2021). 

2.3.2 AI-Driven Analysis 

The analysis of beehive audio data has greatly benefited from the integration of machine 

learning (ML) and deep learning (DL) techniques. These advanced methods enable the 

automatic detection and classification of various bee sounds, which correspond to different hive 

activities and health conditions (Ali et al., 2021, November). For instance, ML algorithms can 

identify the unique buzzing patterns associated with foraging, swarming, or the presence of a 

queen. Deep learning models, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), have proven particularly effective for complex pattern recognition 

tasks, providing high accuracy in distinguishing between normal and abnormal bee sounds 

(Nassif, Shahin, Attili, Azzeh, & Shaalan, 2019). 

Various feature extraction techniques, such as Mel-frequency cepstral coefficients 

(MFCC) and linear predictive coefficients (LPC), have been employed in beehive monitoring 

systems to extract meaningful data from audio signals (Zheng, Zhang, & Song, 2001). These 

features are then used in conjunction with classifiers like Gaussian mixture models (GMM) and 

hidden Markov models (HMM) to categorize bee activities. The design of an IoT system for 

acoustic swarm monitoring using MFCC and LPC features, compared with classifiers like 

GMM and HMM, has shown that HMMs can provide effective solutions for the classification 

of bee activities. Many established approaches from automatic speech recognition (ASR) have 

been adapted for this purpose (Zgank, 2021). 

Despite the success of HMMs and GMMs in some tasks, our research leverages deep 

neural networks (DNNs) due to their superior performance in complex pattern recognition tasks 

and their proven effectiveness in related fields such as ASR (Zacepins, 2015). DNNs are 

capable of handling large datasets and learning intricate features that simpler models might 

miss, making them ideal for the acoustic analysis of beehive sounds (Andrijević, 2022). CNNs 

and RNNs are adept at capturing the temporal and spatial characteristics of audio data, 

enhancing the accuracy of acoustic classifications. This approach represents an efficient 

solution, facilitating rapid development and deployment in practical applications (Yesodha, 

2024). 
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The main contribution of this work is to apply deep learning models for bee activity 

acoustic classification, building upon the foundation of feature extraction techniques like 

MFCC (Abdollahi, 2022). By utilizing DNNs, we aim to achieve high accuracy in classifying 

bee sounds, ensuring reliable monitoring of hive health and activities. Additionally, we explore 

the impact of audio compression, such as the lossy MP3 codec, on the classification 

performance, striving to develop methods that minimize feature loss while maintaining data 

integrity (Zaman, A., & Dorin, A., 2023). 

The study by Niella et al. (Niell, 2018) explores the use of Support Vector Machines 

(SVM) to evaluate beehives as biomonitors for pesticide presence in agroecosystems. The 

research aimed to classify environments based on the impact of pesticides using both biological 

indicators (such as bee population and brood area estimations) and chemical indicators 

(including the number of pesticides detected and related toxic units). The SVM models 

demonstrated that while biological indicators alone provided a modest classification accuracy 

of 57%, incorporating chemical analysis significantly improved accuracy to 100% (Qandour, 

Amro, et al., 2014). This methodology highlights the potential of using beehive data to monitor 

environmental health and identify at-risk ecosystems, offering a cost-effective approach for 

large-scale agricultural biomonitoring. 

2.3.3 Compression Formats in Beekeeping 

The paper by Andrej Zgank (Zgank, 2021) introduces the application of MP3 and ACC 

(accelerometer) technologies as innovative tools for beehive monitoring, enhancing traditional 

methods of environmental assessment. The MP3 devices are employed to record the acoustic 

environment of beehives. By capturing audio data, researchers can analyze the soundscapes 

within the hive to infer the activity levels and overall health of the bee colony. This audio data 

serves as a non-invasive method to monitor bees, providing continuous and real-time insights 

into the hive dynamics (Cunha, 2020). 

In parallel, accelerometers (ACC) are utilized to measure the vibrations and movements 

within the beehive. These devices capture detailed information about the physical activity and 

behavior of bees. The data collected from accelerometers can reveal patterns related to bee 

movements, hive temperature regulation, and responses to external stressors such as pesticide 

exposure (Cecchi, 2020). By detecting subtle changes in the hive’s vibrational profile, 

researchers can gain a deeper understanding of how environmental factors and contaminants 

affect bee colonies. 
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These technological advancements, MP3 and AAC, complement the biological and 

chemical indicators traditionally used in beehive monitoring (Zgank, 2021). The integration of 

sound and vibration data with chemical analyses of pesticide residues and biological 

assessments of bee populations and brood areas allows for a more comprehensive evaluation of 

hive health and environmental status. This multifaceted approach facilitates the identification 

of at-risk ecosystems and the seasons when bees are most vulnerable to pesticide exposure 

(Szczurek, 2023). 

The use of MP3 and AAC technologies represents a significant step forward in 

agricultural biomonitoring. It provides researchers with robust, detailed, and real-time data that 

enhances the ability to detect and understand the impacts of agrochemicals on bee populations. 

This integrated monitoring framework not only improves the accuracy of environmental 

assessments but also supports the development of more effective strategies for mitigating the 

adverse effects of pesticides on vital pollinator species (Crawford, M., 2017). 

Overall, the incorporation of MP3 and AAC technologies into beehive monitoring 

exemplifies the innovative use of modern tools to address complex ecological challenges. By 

leveraging these technologies, the study underscores the potential to enhance traditional 

monitoring methods, offering a more dynamic and holistic view of agroecosystem health and 

sustainability. 

2.4. CHALLENGES IN BEEHIVE AUDIO DATA 

In the context of beehive monitoring, managing audio data efficiently while maintaining 

data integrity presents several challenges: 

2.4.1 Resource Consumption of Uncompressed Audio 

Using uncompressed audio formats, such as WAV, results in exceptionally large file sizes. 

For instance, continuous 24-hour monitoring of a beehive generates vast amounts of data, which 

can quickly become unwieldy (Melchior, 2019). Large file sizes not only strain storage 

resources but also complicate data transmission. High volumes of data require substantial 

bandwidth for real-time monitoring and increase the energy consumption of IoT devices 

deployed in the field. This inefficiency can lead to frequent maintenance, higher operational 

costs, and potential data loss due to storage overflow (Zacepins, 2015). 
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2.4.2 Distortion from Compressed Audio 

On the other hand, using compressed audio formats like MP3 introduces another set of 

challenges. While MP3 compression significantly reduces file size, it is a lossy compression 

format, meaning that some audio data is irretrievably lost during the compression process. This 

loss can lead to distortions that may obscure critical acoustic features necessary for accurate 

analysis (Yang, Yunzhao, et al., 2019). For example, the nuances in the buzzing patterns of 

bees, which are essential for detecting specific behaviors or health conditions, may be degraded. 

This degradation can adversely affect the performance of AI algorithms used for classifying 

and analyzing bee sounds, leading to reduced accuracy and reliability of the monitoring system 

(Li, 2010, July). 

In the paper by Zgank (Zgank, 2021), the authors address the issue of distortion among 

different MP3 bitrates when using audio recordings for beehive monitoring. The quality of 

audio data is crucial for accurately interpreting the acoustic environment within beehives. The 

bitrate of an MP3 file, which determines the amount of data processed per second, directly 

impacts the fidelity and clarity of the recorded sounds. 

The study highlights that lower bitrate MP3 recordings tend to introduce more 

compression artifacts and distortions, which can obscure important acoustic signals necessary 

for assessing hive activity and health. These distortions can make it challenging to distinguish 

between natural bee sounds and other noises, potentially leading to misinterpretations or missed 

detections of critical events within the hive (Khalil, 2021). 

The authors suggest that careful consideration must be given to the choice of MP3 bitrate 

when deploying audio recording devices in beehives. Ensuring high-quality audio recordings is 

essential for the reliable use of acoustic data in environmental monitoring and assessment. By 

selecting appropriate bitrates, researchers can maximize the utility of MP3 recordings, 

providing clearer and more precise data for evaluating the health and activity of bee colonies 

(Crawford, M., 2017). 

This discussion underscores the importance of technical specifications in the effective 

application of MP3 technology for ecological research. It highlights that while modern tools 

offer significant advantages, the quality of data collection must be maintained to achieve 

accurate and meaningful results in environmental monitoring. 
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2.4.3 Implications for Beehive Monitoring 

The challenges associated with both uncompressed and compressed audio data necessitate 

a careful consideration of the trade-offs between file size and audio quality. Efficient beehive 

monitoring systems must balance these factors to ensure that the data remains manageable while 

preserving the essential acoustic features required for accurate analysis. 

Our research aims to address these challenges by exploring audio compression techniques 

that minimize feature loss. This approach seeks to develop solutions that provide a practical 

balance, enabling the effective transmission and storage of audio data without compromising 

the integrity needed for reliable AI-driven analysis (Guruprasad, 2024). By optimizing audio 

compression strategies, beehive monitoring systems can become more scalable and effective, 

ultimately supporting better decision-making in beekeeping practices. 

2.5. RESEARCH GAP: AUDIO COMPRESSION WITHOUT FEATURE LOSS 

Given the challenges outlined above, there is a clear need for innovative solutions that 

address the limitations of both uncompressed and lossy compressed audio formats in beehive 

monitoring. Existing research and applications have primarily focused on either maintaining 

high data fidelity with uncompressed formats or reducing file size at the cost of some level of 

data loss with formats like MP3. 

However, a significant research gap exists in the development of audio compression 

techniques that effectively balance these two aspects—retaining critical audio features essential 

for AI-based analysis while significantly reducing file size. This gap highlights the necessity 

for advanced compression algorithms capable of preserving the nuanced acoustic features of 

bee sounds, which are crucial for accurate monitoring and analysis. 

Our research is poised to fill this gap by investigating and developing new compression 

methodologies that ensure minimal feature loss. These methodologies aim to maintain the 

integrity of audio data to support precise classification and analysis of bee behaviors and hive 

health conditions. By achieving this balance, our work will contribute to more efficient, reliable, 

and scalable beehive monitoring systems, facilitating better management and decision-making 

for beekeepers. 
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2.6. HYPOTHESES AND RESEARCH QUESTIONS 

2.6.1 Feasibility of FLAC 

FLAC presents a feasible solution for beehive monitoring due to its ability to preserve 

audio quality, efficient compression ratio, and open-source nature. Unlike lossy formats like 

MP3, FLAC compresses audio without any loss of fidelity, which is crucial for detecting subtle 

sound variations that indicate hive health (Firmansah, 2016). It achieves a significant size 

reduction, typically 30-50% smaller than uncompressed WAV files, making it practical for 

storing and transmitting large audio datasets efficiently while maintaining quality. Additionally, 

FLAC’s fast and efficient encoding and decoding processes are beneficial for real-time 

monitoring applications, allowing timely analysis and alerts for activities such as swarming or 

predator presence (Zhao, 2007). As an open-source format, FLAC is free to use and supported 

across various platforms, making it accessible to beekeepers and researchers working with 

budget constraints (van Beurden M. Q., 2022 Aug. 21). 

2.6.2 Hypotheses 

FLAC compression can significantly reduce audio file size without compromising the 

accuracy of AI-based beehive monitoring systems. 

The hypothesis suggests that employing FLAC compression in audio files for beehive 

monitoring systems will yield substantial reductions in file size while ensuring that the accuracy 

of AI-based monitoring remains unaffected. This hypothesis anticipates that the compression 

algorithm will efficiently reduce the data footprint without compromising the fidelity of the 

audio recordings, thus enhancing the overall efficiency and practicality of beehive monitoring 

systems without sacrificing accuracy in activity classification. 

2.6.3 Research Questions 

• Question 1 

How does FLAC compression impact the classification accuracy of different bee 

activities compared to uncompressed and MP3 compressed formats? 

• Question 2 

What are the storage and transmission efficiency gains achieved by using FLAC in 

beehive monitoring? 

These two research questions logically address key aspects of the study's objectives. The 

first examines how FLAC compression affects the classification accuracy of bee activities 
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compared to uncompressed and MP3 formats, crucial for effective monitoring. The second 

question evaluates the storage and transmission efficiency gains of using FLAC in beehive 

monitoring, essential for optimizing resource usage in real-world applications. Together, they 

form a concise yet comprehensive framework for exploring FLAC's impact on both accuracy 

and efficiency in bee monitoring. 

2.7. SUMMARY AND IMPLICATIONS 

In the exploration of audio compression techniques (2.1), their application in beehive 

monitoring (2.2), and the practical implications of such monitoring (2.3), challenges emerge, 

notably in managing beehive audio data (2.4). These observations lead to the identification of 

a research gap: the need for data compression techniques without feature loss (2.5). Hypotheses 

and research questions (2.6) are then formulated to address this gap, aiming to assess the impact 

of compression methods on accuracy and efficiency in beehive monitoring systems. 
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Chapter 3. Research Design 

In this pivotal chapter, we meticulously craft the blueprint for our research endeavor, 

focusing on the intricate design elements shaping our exploration. At the heart of our study lies 

the independent variable of compression format, directly influencing our dependent variables—

classification accuracy and file size. Through carefully crafted hypotheses, consideration of 

hardware and software instruments, delineation of our timeline, and conscientious reflection on 

ethical implications and limitations, we establish a robust framework for inquiry. This chapter 

serves as the cornerstone of our methodological approach, ensuring rigor, transparency, and 

ethical integrity throughout our investigation. 

3.1. INDEPENDENT VARIABLE 

The choice of audio compression format serves as the independent variable because it is 

under the control of the researcher and can be manipulated independently of other factors. In 

experimental design, the independent variable is the factor that is deliberately changed or 

manipulated to observe its effect on the dependent variable(s). In this study, researchers can 

intentionally select and apply different compression formats (WAV, FLAC, MP3) to the audio 

data without any influence from external factors. By varying the compression format, 

researchers can examine how changes in compression levels affect dependent variables such as 

classification accuracy and file size. Therefore, the audio compression format meets the criteria 

for being an independent variable in this study as it can be systematically altered, and its effects 

observed and measured. 

3.2. DEPENDENT VARIABLES 

The classification accuracy and file size serve as dependent variables in this study because 

they are outcomes or measurements that are influenced by changes in the independent variable, 

which is the choice of audio compression format. 

3.2.1 Classification Accuracy 

This variable represents the accuracy of classification models trained on audio data that 

has been compressed using different formats (e.g., WAV, FLAC, MP3). The accuracy of the 

classification models is dependent on the quality of the compressed audio data, which in turn is 

influenced by the compression format applied. Higher classification accuracy indicates better 
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performance in accurately classifying audio data into their respective categories (e.g., queen 

bee sound vs. no-queen bee sound). 

3.2.2 File Size 

This variable measures the size of audio files after compression, expressed in bytes or 

kilobytes. The file size is dependent on the level of compression applied by the chosen audio 

compression format. Different compression formats (e.g., lossless FLAC vs. lossy MP3) result 

in varying degrees of file size reduction while attempting to preserve audio quality. Therefore, 

the file size of compressed audio data is influenced by the compression format selected as the 

independent variable. 

3.3. HYPOTHESES 

These hypotheses serve as testable propositions that guide the experimental investigation 

into the effects of audio compression formats on classification accuracy and file size. By testing 

these hypotheses, researchers aim to validate the effectiveness of FLAC compression in 

preserving classification accuracy while achieving file size reduction, contributing to a better 

understanding of the trade-offs between audio quality and storage efficiency in audio 

compression. 

3.3.1 Hypothesis 1 

This hypothesis posits that FLAC, as a lossless compression format, will maintain the 

same classification accuracy as the original uncompressed audio format. It implies that 

compressing audio using FLAC should not result in any loss of quality, meaning the accuracy 

of classification models should remain unchanged compared to when using the original 

uncompressed audio data. 

3.3.2 Hypothesis 2 

This hypothesis suggests that FLAC compression will effectively reduce file size 

compared to the uncompressed audio format while maintaining the same classification 

accuracy. Additionally, it posits that FLAC can achieve this file size reduction without 

necessitating a significant increase in hardware costs, making it a practical and efficient storage 

solution. The hypothesis also considers that the reduced file size will save transmission time, 

further enhancing the overall efficiency of data handling. 
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3.4. INSTRUMENTS 

This section outlines the hardware and software used in the study, detailing the specific 

operating environment and the reasons for selecting these tools. The rationale behind the choice 

of each software is also provided to ensure clarity. This information is intended to ensure 

transparency and to assist other researchers who may wish to replicate the experiment. 

3.4.1 Hardware 

• Processor: Intel(R) Core (TM) m3-6Y30 CPU @ 0.90GHz (4 CPUs), ~1.5GHz 

• Memory: 4096MB RAM 

• Storage: NTFS, 120GB 

• DirectX Version: DirectX 12 

• Bandwidth: Optical fiber, download speed: 309Mbps 

• Operating System: Windows 10 64-bit (10.0, Build 19045)  

3.4.2 Software 

3.4.2.1. Open Research Data Platform: Zenodo 

Zenodo is an open research data platform that facilitates the sharing, preservation, and 

citation of research outputs across all fields of science. Developed by CERN, the European 

Organization for Nuclear Research, Zenodo offers researchers a free and user-friendly platform 

to deposit and publish a wide range of research outputs, including datasets, software, images, 

videos, and more. It provides persistent identifiers (DOIs) for deposited content, ensuring its 

long-term accessibility. Researchers can also assign licenses to their data, enabling others to 

reuse and build upon their work while respecting intellectual property rights. Zenodo promotes 

open science principles by fostering collaboration, transparency, and reproducibility in 

research.  

Open Source Beehives (OSBH) project, which aims to develop open-source beehive 

designs and monitoring tools to support beekeepers and research efforts to protect bee 

populations, has chosen Zenodo as a repository for sharing its research outputs, data, and related 

materials. By utilizing Zenodo, the OSBH project ensures that its work is openly accessible to 

the broader scientific community, contributing to collaboration and knowledge-sharing in the 

field of beekeeping and pollinator conservation. 
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3.4.2.2. Compress Tool: FFmpeg 

FFmpeg is a powerful and versatile open-source software tool primarily used for handling 

multimedia data. It includes a wide range of functionalities related to audio, video, and other 

multimedia formats, making it a popular choice for professionals and enthusiasts alike. One of 

its key features is its ability to compress audio and video files efficiently while maintaining 

high quality. FFmpeg supports various codecs and formats, allowing users to transcode, encode, 

decode, and manipulate multimedia files with ease. Whether you need to resize, convert, or 

compress multimedia content, FFmpeg offers a comprehensive set of tools to meet your needs. 

3.4.2.3. Runtime Platform: Python 

Python is a versatile and user-friendly programming language renowned for its simplicity, 

readability, and extensive capabilities. With its clear and concise syntax, Python facilitates rapid 

development and is suitable for a wide range of applications, from web development and 

automation to scientific computing, artificial intelligence, and data analysis. Its extensive 

standard library and vast ecosystem of third-party packages provide developers with powerful 

tools to tackle complex problems efficiently. Python's cross-platform compatibility and strong 

community support make it a popular choice for beginners and experienced developers alike. 

Furthermore, its popularity continues to rise steadily, solidifying its position as one of the most 

widely used programming languages in the world. 

3.4.2.4. Development Environment: Visual Studio 

Visual Studio is a comprehensive integrated development environment (IDE) developed 

by Microsoft. It provides a powerful and feature-rich platform for software development across 

various programming languages and platforms, including but not limited to C#, C++, Visual 

Basic, Python, and JavaScript. Visual Studio offers a wide range of tools and features to 

streamline the development process, including code editing, debugging, testing, version control, 

and collaboration tools. 

Visual Studio supports Jupyter notebooks, a popular tool for data exploration and analysis 

in Python. Developers can create, edit, and run Jupyter notebooks directly within Visual Studio, 

seamlessly integrating data analysis workflows into their Python development environment. 

These features enhance the versatility of Visual Studio for Python developers, supporting a 

wide range of use cases from software development to data science and analysis. 
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3.5. PARTICIPANTS 

3.5.1 NU-Hive Dataset 

The NU-Hive dataset is a comprehensive collection of audio recordings from the NU-

Hive project (S. Cecchi, 2018), aimed at the automatic recognition of beehive sounds. These 

recordings originate from controlled, homogeneous environments primarily associated with 

two hives. Each audio segment is labelled according to the presence or absence of the queen 

bee. The dataset's recordings include external sounds such as traffic, car honks, and birds, 

providing a contrast to the bee-specific sounds. Approximately 60% of the annotated recordings 

are sourced from the NU-Hive dataset, representing data from the two hives. 

3.5.2 Open Source Beehive (OSBH) Dataset 

The OSBH dataset consists of audio recordings gathered from the Open Source Beehive 

project, which aims to develop a beehive monitoring system (Project., 15 December 2020). 

These recordings come from a citizen science initiative, with contributions from the public 

capturing sounds from their beehives. The dataset is highly diverse, reflecting different 

recording conditions, devices, hive environments, and microphone positions. The remaining 

recordings in the annotated dataset are from the OSBH dataset, featuring contributions from six 

different hives located in North America, Australia, and Europe. 

3.5.3 BeeAudio Dataset 

The BeeAudio Dataset is a significant initiative aimed at leveraging computational 

methods to address bee population decline by remotely and instantly detecting the health status 

of beehives through sound data analysis (Yang, 2022). This dataset comprises the largest single 

collection of bee audio recordings, collected using a custom IoT device that combines an ESP32 

Wi-Fi module, an INMP441 microphone module, and a BME280 temperature/humidity sensor. 

All data is original, sourced from European Honeybee hives in California, with recordings 

divided into 60-second chunks. This provides a comprehensive resource for studying bee 

communication and behaviours. The BeeAudio Dataset consists of 7100 samples, contributing 

significantly to the diversity and richness of the annotated dataset for research purposes. 

3.5.4 Sample Type and Size 

Each dataset includes varying numbers of recordings of different lengths, contributing to 

a total duration of approximately 2 hours. The annotated dataset comprises time-labeled 

segments categorized as "Queen" or "noQueen," representing pure beehive sounds and periods 

with external sounds, respectively. 
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3.5.5 Reasons for the Number Selected  

The selection of segment numbers for both the training and testing datasets was guided 

by several key considerations aimed at ensuring robust model training and evaluation. 

Maintaining a balanced ratio between the training and testing datasets is crucial for preventing 

bias and overfitting in the model. The chosen ratio of 3:1 for training to testing data ensures 

that the model is exposed to a diverse range of instances during training while still retaining a 

substantial portion for independent evaluation. 

Each duration of the training dataset spans 90 minutes, while the testing dataset covers a 

duration of 30 minutes. By segmenting the audio recordings into 3-second segments, each 

dataset achieves a balanced distribution of segment types within their respective durations. The 

selected numbers of segments are statistically significant for conducting meaningful model 

training and evaluation, providing a sufficiently large sample size to capture the variability 

present in the audio recordings from both hive states. 

Overall, the chosen numbers of segments for the training and testing datasets were 

determined to strike a balance between representation, balance, duration considerations, and 

statistical significance, thereby facilitating robust model development and assessment in the 

context of audio-based smart beekeeping. 

3.5.6 Basis for Selection 

Recordings within each dataset are selected based on their relevance to the research 

objectives, providing a representative sample of bee-related audio phenomena encountered in 

real-world beekeeping environments. 

3.6. PROCEDURE AND TIMELINE 

This section presents a comprehensive overview of the procedure and timeline followed 

in the study. The research was conducted in a series of well-defined stages, each building upon 

the previous one to ensure a structured and systematic approach. 

1. Define research objectives. (1 month) 

2. Literature & Algorithm Review (1 month) 

3. Data Acquisition & Initial Analysis (1 month) 

4. Feasibility Analysis (1 month) 

5. Proposal Report and Defence (1 month) 
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6. Experiments (2 month) 

7. Evaluation and Fine-tuning (1 month) 

8. Results Analysis and Interpretation (1 month) 

9. Report Writing and Finalization (2 month) 

3.7. ETHICS AND LIMITATIONS 

3.7.1 Ethical Considerations 

This research adheres to ethical guidelines concerning the use of datasets and 

experimental procedures. All datasets used in this study were obtained from publicly available 

sources or with appropriate permissions and consent. The privacy and confidentiality of 

individuals associated with the datasets have been preserved, and no personally identifiable 

information is disclosed. Additionally, any potential biases in dataset collection, annotation, or 

usage have been carefully considered and addressed to ensure the integrity and fairness of the 

research outcomes. 

3.7.2 Potential Problems and Limitations 

Despite rigorous methodological approaches, several limitations and potential problems 

exist within this research. One limitation concerns the generalizability of the findings, as the 

datasets used may not fully represent the diversity of real-world beekeeping environments. 

Additionally, variations in recording conditions, equipment quality, and environmental factors 

may introduce noise and variability into the data, affecting the performance of the machine 

learning algorithms. Furthermore, the reliance on audio-based data for bee sound recognition 

may overlook other important indicators of hive health and behavior, necessitating 

complementary approaches for comprehensive hive monitoring. 

3.7.3 Threats to Validity 

Several factors pose potential threats to the validity of the results obtained in this study. 

These include selection bias in dataset compilation, model overfitting due to limited dataset 

size or complexity, and algorithmic biases inherent in machine learning methodologies. 

Additionally, the lack of standardized evaluation metrics for bee sound recognition tasks may 

impact the comparability of results across studies. To mitigate these threats, robust validation 

procedures, including cross-validation and independent testing, have been employed to ensure 

the reliability and validity of the research findings. 
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Chapter 4. Methodology 

The methodology section of this research paper outlines the approach taken to bridge the 

identified research gap of "Audio Compression without Feature Loss." Firstly, the methodology 

involves an in-depth exploration and understanding of the FLAC compression technique, 

focusing on its ability to minimize feature loss in audio data. FLAC is selected as the target 

compression format due to its lossless nature, which aims to preserve all audio features while 

reducing file size. Secondly, the evaluation of compression techniques provides empirical 

evidence regarding the effectiveness of these methods in preserving audio features during 

compression. Mel-Frequency Cepstral Coefficients combined with Support Vector Machines 

are selected as the approach to demonstrate the suitability of FLAC as a compression format. 

The rationale behind this approach lies in the effectiveness of MFCC in capturing essential 

audio features, making it suitable for tasks such as audio classification. By extracting MFCC 

features from audio data compressed in different formats, this study aims to evaluate the impact 

of compression techniques on the preservation of crucial audio characteristics. Support Vector 

Machine is a robust supervised machine learning algorithm widely used for both classification 

and regression tasks. 

4.1. FREE LOSSLESS AUDIO CODEC 

FLAC, which stands for Free Lossless Audio Codec, is an audio compression codec that 

is known for its ability to compress audio files without any loss of quality. Here's a detailed 

overview of FLAC: It employs a process of linear prediction, where it analyzes the audio signal 

and predicts subsequent samples based on previous ones. The differences between these 

predictions and the actual samples, known as residuals, are then calculated. These residuals 

typically have smaller values and less complexity than the original audio data, making them 

easier to compress. FLAC encodes these residuals using a method such as Rice coding, which 

is particularly effective for sequences with smaller numerical values. Along with the encoded 

residuals, FLAC also stores essential metadata about the audio, like the sample rate and number 

of channels. During decompression, FLAC reverses this process, using the stored prediction 

model and residuals to reconstruct the audio signal precisely, ensuring that the output is a 

perfect match to the original uncompressed audio. As a result, FLAC provides an ideal solution 
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for high-quality audio storage and playback where maintaining the original sound's integrity is 

crucial. FLAC provides lossless compression, meaning that the original audio data can be 

perfectly reconstructed from the compressed file. This is crucial for applications where audio 

quality is paramount.  

While not as compact as lossy formats like MP3 or AAC, FLAC typically reduces file 

sizes to about 50-70% of their original size, depending on the source material. This is quite 

efficient for a lossless format. Since FLAC is lossless, it preserves the full fidelity of the original 

audio signal. This makes it ideal for high-quality audio storage, archiving, and playback. FLAC 

is designed to be computationally efficient for both encoding (compression) and decoding 

(decompression). This makes it suitable for real-time applications. 

How FLAC Works 

4.1.1 Encoding Process 

FLAC (Free Lossless Audio Codec) stands out for its ability to compress audio data 

without compromising its original fidelity. This process is meticulously orchestrated through a 

series of steps. First, the input audio signal is segmented into fixed-size blocks or frames, 

typically around 4096 samples each, through a process called blocking. Subsequently, linear 

predictive coding (LPC) is applied to each block, where past audio samples are utilized to 

forecast future samples. This prediction process employs various LPC models, ranging from 

simple fixed-order models to more complex ones, often tailored to the characteristics of the 

audio signal. Once the predicted samples are determined, the residual—essentially the 

difference between the actual and predicted samples—is calculated. This residual typically 

exhibits a smaller dynamic range than the original audio signal, rendering it more amenable to 

compression. The next step, quantization, involves representing the residual signal with a finite 

number of bits, a process facilitated by Rice coding, which is particularly effective for signals 

with a limited dynamic range. Following quantization, entropy coding, specifically Rice coding, 

is employed to further compress the quantized residuals by exploiting their statistical properties. 

This brief process is shown as Figure 1. This compression method takes advantage of the fact 

that the residuals tend to follow certain statistical distributions, thereby reducing redundancy 

and optimizing storage efficiency. Finally, metadata such as tags, cover art, and additional 

information can be embedded into the encoded audio blocks to enrich the final FLAC file. This 

meticulous encoding process ensures that the resulting audio file maintains its original quality 

while significantly reducing its size, making it an ideal choice for applications where preserving 
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audio fidelity is paramount, such as in professional audio production and archival storage (van 

Beurden M. Q., Aug. 21, 2022). 

 

Figure 1. Structure of FLAC encoder; the paper "A review of lossless audio compression 
standards and algorithms" (Muin, 2017)  highlights that many lossless audio compression 
methods share a similar theoretical basis, often employing Linear Prediction Coding (LPC) 
as a core technique. FLAC (Free Lossless Audio Codec) is a notable example that utilizes 
LPC. 

 

4.1.2 Decoding Process 

The decoding process for FLAC mirrors the encoding process in its meticulousness, 

ensuring that the audio can be faithfully reconstructed without any loss of information. This 

process involves several key steps, beginning with reading the FLAC file, which contains both 

the encoded audio blocks and associated metadata. Entropy decoding follows, wherein the 

residuals, originally compressed using Rice coding during encoding, are decoded back to their 

quantized form. Subsequently, inverse quantization reverses the quantization process, restoring 

the quantized residuals to their original form. Prediction inversion then comes into play, 

utilizing the LPC coefficients and residuals to reconstruct the original audio samples precisely. 

This step involves combining the predicted values with the residuals to recreate the exact 

original samples. The reconstructed audio blocks are then recombined to form the continuous 

audio signal through re-blocking. Ultimately, the decoding process yields a final output—an 

audio stream that is bit-for-bit identical to the original input—ensuring that no information is 

lost throughout the compression and decompression procedures (van Beurden M. Q., 2022 Aug. 

21). 

4.1.3 Validation of FLAC Performance 

The section objective is to visually compare the waveforms of audio files in different 

compression formats. This comparison aims to reveal the effects of various compression 

techniques on the audio signal's amplitude over time. The formats being compared are WAV 

(an uncompressed format), MP3 (a lossy compression format), and FLAC (a lossless 

compression format). 

The waveform comparison provides insights into the effects of bee sound compression. 

The waveform curves in Figure 2, Figure 3 and Figure 4 demonstrated that while FLAC and 
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WAV formats maintain high audio fidelity, the MP3 format, due to its lossy compression, 

results in a loss of audio detail. This is particularly evident in the finer aspects of the waveform, 

where MP3 fails to replicate the exact amplitude variations present in the original uncompressed 

audio. For AI analysis where audio quality is paramount, FLAC emerges as a suitable 

alternative to WAV, offering both compression and preservation of audio quality.  

 

Figure 2. WAV Waveform is drawn by python library scipy.io. This results in higher 

quality and more detailed waveforms. 

 

Figure 3. MP3 Waveform is drawn by python library scipy.io. The MP3 waveform may 

appear less detailed due to the lossy compression. 

 

Figure 4. FLAC Waveform is drawn by python library scipy.io. Because FLAC preserves 

all the original audio data, its waveform is identical to that of a WAV file. 
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In finalizing our decision for a compression method in beekeeping research, FLAC stood 

out as the ideal choice. Its attributes uniquely align with our requirements. As an open-source 

codec, FLAC offers cost-effective accessibility. Its lossless nature is crucial, ensuring that 

intricate bee sounds, particularly those from the queen, are preserved without any quality 

degradation. This aspect is vital for accurate data analysis. FLAC's specialization in audio 

compression means it's adept at handling the specific nuances of bee audio data efficiently. 

Importantly, FLAC's compression is specific and not bundled with archiving functionalities, 

meaning it focuses solely on reducing audio file sizes effectively while maintaining the original 

data integrity. Thus, FLAC stands out as the most suitable audio compression method for our 

research, balancing cost-effectiveness, fidelity, and efficiency in data handling.  

4.2. MEL FREQUENCY CEPSTRAL COEFFICIENTS  

Mel Frequency Cepstral Coefficients are a fundamental feature extraction technique in 

the field of audio signal processing, particularly in tasks related to speech recognition, sound 

classification, and acoustic analysis. MFCCs are inspired by the human auditory system's 

perception of sound and are designed to capture the essential spectral characteristics of an audio 

signal. The process of extracting MFCCs involves several key steps as shown Figure 5. 

 

Figure 5. Study of MFCC Feature Extraction Methods with Probabilistic Acoustic Models 

for Speaker Biometric Applications - Scientific Figure on ResearchGate (A, S., Thomas, A., & 

Mathew, D., 2018). Available from: https://www.researchgate.net/figure/Block-diagram-of-

MFCC-Feature-extraction_fig1_329046751. 

Pre-Emphasis 

The pre-emphasis step is the initial stage in the calculation of Mel Frequency Cepstral 

Coefficients (MFCCs). Its primary purpose is to amplify the high-frequency components of an 

audio signal and mitigate the effects of high-frequency noise. This step is crucial for improving 

the signal's spectral characteristics and enhancing its overall signal-to-noise ratio, making it 

more suitable for subsequent analysis, such as feature extraction. 
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The relationship between Pre-Emphasis and Analog-to-Digital Conversion (ADC) is 

integral to understanding this process. ADC is the process by which the continuous analog audio 

signal, like human speech or any other sound, is converted into a digital representation 

consisting of discrete numerical values. This digital representation, often referred to as the 

digital audio signal, is obtained through two key steps: sampling and quantization. 

The fundamental idea behind pre-emphasis is to emphasize the importance of high-

frequency information in the audio signal, as this information often contains valuable spectral 

details related to speech or other audio events. By boosting the high-frequency components, the 

pre-emphasis filter makes these details more prominent and less susceptible to being masked 

by noise or other unwanted artifacts. 

Framing 

Framing is a critical step in the feature extraction process for audio signals, including the 

calculation of Mel Frequency Cepstral Coefficients (MFCCs). It involves dividing the 

continuous audio signal into smaller, overlapping frames or segments. This segmentation 

allows us to analyze the audio signal in a localized manner, capturing its spectral characteristics 

over short time intervals. The framing process involves partitioning the continuous audio signal 

into overlapping or non-overlapping frames of fixed duration. Mathematically, this is achieved 

using the following equation: 

N=Frame Duration × Sampling Rate 

During framing, you can choose to overlap consecutive frames by a certain percentage 

(usually 50% overlap is common). The overlap facilitates smoother transitions between frames 

and provides additional temporal context for feature extraction. 

Windowing 

Windowing is a critical step in audio signal feature extraction, particularly in the 

calculation of Mel Frequency Cepstral Coefficients (MFCCs). Following the segmentation of 

the audio signal into frames, each frame undergoes element-wise multiplication with a chosen 

window function. This process serves several vital purposes. Firstly, it gently tapers the edges 

of each frame to zero, mitigating abrupt discontinuities at frame boundaries that might introduce 

unwanted spectral artifacts during subsequent analysis, such as Fourier Transforms. Secondly, 

it facilitates smoothing by reducing the impact of sudden signal changes near frame boundaries, 

ensuring continuity, and minimizing spectral leakage. Additionally, windowing promotes the 

assumption of stationarity within each frame, a crucial requirement for many spectral analysis 
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techniques. Lastly, windowing allows customization of the frame's spectral content, enabling a 

balance between frequency and temporal resolution, with different window functions offering 

various trade-offs tailored to specific analysis requirements. 

Fourier Transform 

The Fast Fourier Transform (FFT) is a powerful mathematical algorithm that bridges the 

time and frequency domains in signal processing. It enables the efficient conversion of a time-

domain signal into its frequency-domain representation. Let's explain the FFT in the context of 

both domains: In the time domain, a signal is represented as a sequence of amplitude values 

over discrete time intervals. Each data point corresponds to the signal's amplitude at a specific 

point in time. Consider an example of an audio waveform, wherein the time domain, you have 

a series of amplitude values sampled at regular intervals, representing the sound wave's 

behavior over time. The frequency domain represents the same signal in terms of its frequency 

components. It provides information about which frequencies are present in the signal and the 

magnitude (amplitude) and phase of those frequencies. When you apply the FFT to the time-

domain signal, it transforms the signal into the frequency domain. The output of the FFT is a 

spectrum that shows the amplitude of each frequency component present in the signal. In the 

frequency domain, you can identify dominant frequencies, harmonics, and noise components. 

It provides a more detailed view of the signal's spectral characteristics. Time-Domain Input 

starts with a time-domain signal, such as an audio waveform or any time-varying signal. When 

you apply the FFT algorithm to the time-domain signal, it efficiently calculates the Discrete 

Fourier Transform (DFT) values. The result is a set of complex numbers representing the 

signal's frequency components. The output of the FFT is a spectrum that shows the amplitude 

and phase of each frequency component. This spectrum provides a detailed view of the signal's 

frequency composition. 

Mel Filterbank 

The Mel Filterbank is an essential component in audio signal processing, particularly in 

the calculation of Mel Frequency Cepstral Coefficients (MFCCs). It serves to transform the 

linear frequency representation of an audio signal into the perceptually motivated Mel scale. 

Achieved through a series of triangular filters, the Mel Filterbank emphasizes frequencies 

relevant to human auditory perception while discarding less critical information. These filters, 

varying in width along the Mel scale, discretize the entire frequency spectrum, and their outputs 

provide a weighted representation of the signal's spectral content. By logarithmically scaling 

these filterbank outputs and applying the Discrete Cosine Transform (DCT), MFCCs are 
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derived, capturing the essential spectral features of audio signals. This technique finds 

widespread application in speech recognition, audio classification, and speaker identification, 

enabling efficient and informative analysis of audio data. 

Logarithm 

After obtaining the filterbank outputs, the next step involves applying the logarithm 

(typically the natural logarithm, ln) to these values. This logarithmic scaling serves several 

essential purposes in MFCC computation. Human perception of loudness and pitch is roughly 

logarithmic. Logarithmic scaling aligns the representation with human auditory perception, 

making the MFCCs more perceptually relevant. Logarithmic scaling compresses the dynamic 

range of the filterbank outputs, reducing the influence of large energy variations and making 

the MFCCs more robust to noise and intensity differences. Logarithmic scaling reduces the 

dimensionality of the feature vector. This compact representation is computationally efficient 

and often leads to improved model performance. 

Discrete Cosine Transform (DCT) 

Finally, the Discrete Cosine Transform (DCT) is applied to the log-filterbank energies. 

The resulting coefficients, known as MFCCs, capture the spectral characteristics of the audio 

signal while reducing redundancy. The first few coefficients often contain the most relevant 

information and are used as features in subsequent analyses. MFCCs offer several advantages 

for audio analysis. They compactly represent the spectral content of audio signals, reducing 

dimensionality while retaining essential information. Additionally, they are robust to variations 

in speech or sound duration and have been widely used in speech recognition and audio 

classification tasks due to their effectiveness in capturing acoustic features. In the following 

sections, we will explore the application of MFCCs in the context of our research on bee-related 

audio data, highlighting their role in characterizing queen bee and worker bee sounds. 

4.3. SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) is a robust supervised machine learning algorithm 

widely used for both classification and regression tasks. It is known for its effectiveness in high-

dimensional spaces and its ability to handle complex relationships between input features. 

Objective 

The primary objective of SVM is to identify the optimal hyperplane that best separates 

different classes in the feature space. This hyperplane serves as the decision boundary that 
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discriminates between data points of varying classes. The key is to select a hyperplane that not 

only separates the classes but does so with the maximum possible margin. 

Margin 

The margin in SVM is defined as the distance between the hyperplane and the nearest 

data points from each class, which are known as support vectors. SVM aims to maximize this 

margin, as a larger margin is associated with better generalization capabilities and improved 

performance on unseen data. The optimization process focuses on finding the hyperplane that 

provides the maximum margin, thereby enhancing the classifier’s robustness. 

Support Vectors 

Support vectors are the critical data points that are closest to the hyperplane. These points 

lie on the edge of the margin and play a pivotal role in determining the position and orientation 

of the hyperplane. Interestingly, only a subset of the training data, specifically the support 

vectors, influences the construction of the decision boundary in SVM. This characteristic makes 

SVM particularly efficient, as it relies on these few critical points rather than the entire dataset 

(shown as Figure 6). 

 

Figure 6. Support Vector Machine Theory (JavaTPoint., 2021). suitable as a supervised 

learning algorithm. 

Kernel Trick 

SVMs are capable of handling non-linearly separable data using the kernel trick. Instead 

of explicitly mapping the input data into a higher-dimensional space, the kernel function 

implicitly performs this transformation by computing the dot product of data points in the 

feature space. This approach allows SVM to capture complex patterns without the 
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computational burden of explicit transformation. Common kernel functions include linear, 

polynomial, radial basis function (RBF), and sigmoid kernels. 

Regularization Parameter (C) 

The regularization parameter (C) in SVM controls the trade-off between maximizing the 

margin and minimizing classification errors. A smaller value of C allows for a larger margin 

but tolerates more misclassified points, promoting a simpler model. Conversely, a larger value 

of C aims to minimize misclassification, resulting in a narrower margin and a more complex 

model. Tuning this parameter is crucial for achieving the desired balance between bias and 

variance. 

SVM Kernels 

Linear Kernel is suitable for linearly separable data, where the decision boundary is a 

straight line. This kernel is computationally efficient and works well when the data can be 

separated with a linear hyperplane. Radial Basis Function (RBF) Kernel is suitable for non-

linearly separable data, where the decision boundary is more flexible and can adapt to complex 

patterns. The RBF kernel can handle situations where the relationship between class labels and 

attributes is non-linear, making it a powerful tool for capturing intricate data structures. 

Training 

Training an SVM involves optimizing the hyperplane parameters, namely the weights 

and bias, to minimize the classification error while maximizing the margin. This optimization 

is framed as a convex optimization problem, typically solved using techniques such as 

Sequential Minimal Optimization (SMO) or gradient descent methods. The training process 

entails selecting a kernel function, setting the regularization parameter, and solving the 

optimization problem. 
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Chapter 5. Experiment 

In this experiment, we conduct a thorough investigation into audio classification 

methodologies, covering key aspects from data acquisition to classifier implementation. Our 

process begins with the collection of audio data from open platforms, ensuring a balanced 

representation across categories and employing compression techniques for efficient storage. 

Subsequently, we extract essential features from the audio signals, focusing on Mel-frequency 

cepstral coefficients (MFCCs) known for their effectiveness in capturing spectral 

characteristics. Finally, we implement a classifier using Support Vector Machine (SVM) 

algorithms, leveraging the extracted MFCC features to train and evaluate the model's 

performance. This experiment (steps shown as Figure 7) aims to provide insights into the 

efficacy of audio classification techniques and their applicability in real-world scenarios.  

 

 

Figure 7. Experiment Steps include three phases as data processing, feature extraction 

and SVM classifier. 
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5.1. AUDIO DATA 

This research focuses on utilizing audio data for acoustic research purposes. Bee sound 

serves as the primary subject due to its relevance to study. However, it's important to note that 

bee sound recordings typically contain a small amount of data, posing a limitation to the depth 

of analysis. One valuable resource for acquiring bee sound data is the Open Source Beehives 

(OSBH) project (Project., 15 December 2020). This initiative gathers bee sound recordings, 

including queen sound, from various beehives belonging to beekeepers worldwide. These 

recordings offer a diverse range of data, reflecting variations among beehives, locations, and 

equipment setups. 

The majority of the bee sound recordings adhere to standard specifications, typically 

captured at a 44.1 kHz sampling rate, with 16-bit resolution, and either in stereo or mono format. 

Furthermore, to preserve the integrity of the data, recordings are stored in a lossless format, 

such as Microsoft WAV, chosen for their lossless compression. This preservation maintains the 

original audio quality, serving as reliable benchmarks for comparison. 

Researchers interested in accessing bee sound data for their studies can explore the OSBH 

project's repository, which is readily available for research purposes on the Zenodo open data 

sharing platform. This comprehensive dataset provides a valuable resource for acoustic research 

in the field of bee behavior and ecology. 

The audio data undergoes segmentation into two categories: queen and non-queen bee 

sound, which is shown as Table 1. This segmentation ensures a balanced representation of both 

categories in the dataset. 

Segment Type Categories Segment Length 

Training and Testing Queen, No Queen 3 seconds 

Table 1. Training Category. Training and testing data maintaining a ratio of 3:1. 

For the training dataset, which spans 90 minutes in total, each segment type (queen and 

no queen) comprises 1835 segments. Similarly, for the testing dataset, with a duration of 30 

minutes, each segment type contains 616 segments. This preprocessing strategy ensures that 

both categories are adequately represented in the training and testing datasets, facilitating robust 

model training and evaluation. 
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5.2. COMPRESSION 

5.2.1 MP3 Compression 

To demonstrate the performance of FLAC (Free Lossless Audio Codec) compression, we 

conduct a comparative analysis with MP3 (MPEG Audio Layer III), a widely used lossy audio 

compression format. The goal is to evaluate the impact of compression on audio quality and 

file size. Using FFmpeg, we compress the original WAV files to MP3 at two different bitrates: 

64 kbps and 16 kbps. 

Pseudocode 

Python\\libs\\ffmpeg\\bin\\ffmpeg.exe -file Stanford_Queen_Training_10mins.wav -

bitrate 64k Stanford_Queen_Training_10mins_64K.mp3 

 

5.2.2 FLAC Compression 

In our experiments on audio file conversion for beehive monitoring data, we developed a 

Python script utilizing the pydub library. The script's primary function, convert_to_flac, 

efficiently converts WAV audio file formats to the FLAC format, ensuring lossless compression 

and high-quality audio preservation. The script begins by importing the necessary 

AudioSegment module from the pydub library and the time module to potentially track the 

conversion process duration. The core function, convert_to_flac, takes two arguments: 

source_path and target_path. 

Pseudocode 

FUNCTION convert_to_flac(source_path, target_path): 

audio = LOAD_AUDIO_FROM_FILE(source_path) 

    // This function loads an audio file from the specified source path using the pydub 

library. 

    // Parameters: 

    // source_path: A string representing the file path of the audio file to be loaded. 

    // Returns: 

    // An AudioSegment object representing the loaded audio. 

    audio.export(target_path, format="flac") 
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5.3. MQTT TRANSMISSION 

Using Java code to set up an MQTT client, connects to a secure MQTT broker, and 

publishes parts of an audio file to a specific topic. Each part of the audio file is sent as a separate 

MQTT message, allowing for efficient and manageable transmission of large audio data. This 

approach is useful for applications such as beehive monitoring, where continuous and reliable 

data transmission is essential. 

Pseudocode 

FUNCTION main(): 

    SET brokerUrl TO "ssl://broker_address" 

    SET username TO "your_username" 

    SET password TO "your_password" 

    SET topic TO "your_topic" 

    SET filePath TO "path_to_audio_file" 

 

    SET client TO NEW MqttClient(brokerUrl, GENERATE_CLIENT_ID()) 

    // Set up MQTT connection options 

    SET options TO NEW MqttConnectOptions() 

    options.setUserName(username) 

    options.setPassword(password)  

 

    // Connect to MQTT broker 

    client.connect(options) 

  // Publish part 

    client.publish(topic, NEW MqttMessage(partContent)) 

   PRINT "Part published successfully in", seconds" 

   client.disconnect() 
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By systematically measuring and comparing the compression time and transmission time 

of WAV, MP3, and FLAC formats, we can determine the most appropriate audio format for 

beehive monitoring. This comprehensive evaluation not only optimizes the technical 

performance of the monitoring system but also provides deeper insights into the practical 

aspects of audio data management. Such an approach enriches the research by addressing the 

critical factors influencing the efficiency and effectiveness of beehive monitoring solutions. 

5.4. FEATURE EXTRACTION 

MFCC captures this characteristic by dividing the audio spectrum into mel-frequency 

bands, which are spaced according to the human perception of sound. For each mel-frequency 

band, MFCC calculates the cepstral coefficients, representing the magnitude of each frequency 

component. To extract MFCC features from audio segments, we utilize the librosa library in 

Python, specifically the librosa.feature.mfcc function. The number of MFCC coefficients is set 

to 13. By invoking this function with the appropriate parameters, we obtain a matrix of MFCC 

coefficients representing the spectral characteristics of the audio segment. These coefficients 

serve as feature vectors for further analysis and classification in our research. 

Pseudocode 

function visualize_mel_spectrogram(audio_file, title): 

    # Load audio file 

    audio_data, sampling_rate = load_audio(audio_file) 

    # Calculate Mel spectrogram 

    mel_spectrogram = calculate_mel_spectrogram(audio_data, sampling_rate) 

    log_mel_spectrogram = convert_to_log_scale(mel_spectrogram) 

 

    # Plot Mel spectrogram 

    plot_mel_spectrogram(log_mel_spectrogram, sampling_rate, title) 

 

In the feature extraction phase, four audio files were meticulously chosen, each 

representing distinct formats: WAV, MP3 at 64Kbps, MP3 at 16Kbps, and FLAC. Leveraging 

the powerful capabilities of Librosa's librosa.feature.melspectrogram function, Mel 
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spectrograms shown as Figure 8, Figure 9, Figure 10 and Figure 11 were computed for each 

audio file, encapsulating their frequency distributions over time. This comprehensive approach 

enabled a nuanced comparison of spectrogram characteristics among different formats, 

shedding light on potential distortions induced by compression algorithms and format-specific 

encoding schemes. Through visual inspection and quantitative analysis, discernible 

discrepancies in frequency content and temporal patterns were meticulously scrutinized, 

offering valuable insights into the fidelity and robustness of Mel spectrograms across diverse 

audio formats. 

 

Figure 8. The WAV spectrogram shows a consistent presence of lower frequencies (below 

512 Hz) with higher amplitudes (shown in yellow and green), and higher frequencies (above 

4096 Hz) with lower amplitudes (shown in blue and purple). 

 

Figure 9. The mp3 spectrogram at 64 kbps shows a similar pattern to the wav file, but 

with more noticeable artifacts (visible as irregular patterns) in the higher frequencies. This is 

common for lower bitrate mp3 files, which use more aggressive compression. 
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Figure 10. The MP3 spectrogram at 16 kbps shows significant loss of information in the 

higher frequencies (above 4096 Hz), and the lower frequencies are also less defined. This 

indicates heavy compression and loss of audio quality. 

 

 

Figure 11. The FLAC spectrogram shows a similar pattern to the WAV file, with well-

defined lower frequencies and consistent higher frequencies. FLAC is a lossless format, which 

means it retains all the audio information without compression artifacts. 

After generated spectrogram, we describe the process of generating Mel-Frequency 

Cepstral Coefficients from audio data segments, which are subsequently used as features for 

training and testing an SVM classifier in the smart beekeeping system. Initially, the audio data 

is divided into smaller segments of a fixed length of 3 seconds, making it easier to process and 

analyse. This is done separately for the "queen" and "no queen" data. To ensure uniform 

segment length, shorter segments are padded with zeros. This standardization is necessary for 

consistent feature extraction. MFCCs are then extracted from each segment; these coefficients 

provide a compact and effective representation of the audio signal's spectral properties. The 

MFCCs are resampled to a uniform number of columns to match the shortest segment, ensuring 

that all feature vectors have the same dimensionality, which is crucial for the SVM classifier. 
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Each segment is labelled appropriately: segments from the "queen" data are labelled as 1, and 

those from the "no queen" data are labelled as 0. Below is the pseudocode code used to perform 

the above steps. 

Pseudocode 

# Segment the data into fixed-length frames 

queen_testing_data_segments = segment(queen_testing_data, segment_length_frames) 

no_queen_testing_data_segments = segment(no_queen_testing_data, 

segment_length_frames) 

# Padding segments to ensure uniform length 

max_length_queen = find_max_length(queen_testing_data_segments) 

queen_testing_data_segments_padded = pad_segments(queen_testing_data_segments, 

max_length_queen) 

 

max_length_no_queen = find_max_length(no_queen_testing_data_segments) 

no_queen_testing_data_segments_padded = 

pad_segments(no_queen_testing_data_segments, max_length_no_queen) 

 

# Initialize lists for MFCCs and labels 

initialize empty lists: queen_testing_mfccs, queen_testing_labels 

initialize empty lists: no_queen_testing_mfccs, no_queen_testing_labels 

 

# Define the target number of columns (minimum segment length) 

target_number_of_columns = min_length 

 

# Extract MFCCs and resample them to uniform length 

for each segment in queen_testing_data_segments_padded: 

    queen_mfcc = compute_mfcc(segment, queen_sampling_rate, 13) 
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    queen_testing_mfcc_resampled = resample_mfcc(queen_mfcc, 

target_number_of_columns) 

    append(queen_testing_mfccs, queen_testing_mfcc_resampled) 

    append(queen_testing_labels, 1)  # Label for queen 

 

for each segment in no_queen_testing_data_segments_padded: 

    no_queen_mfcc = compute_mfcc(segment, queen_sampling_rate, 13) 

    no_queen_testing_mfcc_resampled = resample_mfcc(no_queen_mfcc, 

target_number_of_columns) 

    append(no_queen_testing_mfccs, no_queen_testing_mfcc_resampled) 

    append(no_queen_testing_labels, 0)  # Label for no queen 

5.5.  SUPPORT VECTOR MACHINE CLASSIFIER 

Support Vector Machine (SVM) was chosen as the classifier for this classification task 

due to its effectiveness in handling high-dimensional data and its ability to find optimal decision 

boundaries. The Mel-frequency cepstral coefficients (MFCC) extracted from the audio data, 

along with their corresponding labels, were prepared for model training. MFCCs provide a 

compact representation of the spectral features, which are essential for classification tasks. The 

Python library scikit-learn was utilized for implementing SVM. The classifier model was 

initialized using svm.SVC, allowing for customization of kernel functions and other 

hyperparameters. 

Pseudocode 

function process_audio_files() 

    # Load and process training data 

    # Initialize 10-fold cross-validation 

    kfold = initialize_kfold(n_splits=10, shuffle=True, random_state=42) 

 

    # Train the classifier 

    clf = initialize_svm_classifier(kernel='linear') 
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    # Lists to store performance metrics 

    accuracy_scores = [] 

 

    # Loop over the folds 

    for train_index, val_index in kfold.split(X_train, y_train): 

        X_fold_train, X_fold_val = split_training_data(X_train, train_index, val_index) 

        y_fold_train, y_fold_val = split_label_data(y_train, train_index, val_index) 

 

        # Train the classifier on the training fold 

        clf.fit(X_fold_train, y_fold_train) 

        # Make predictions on the validation fold 

        y_pred_fold_val = clf.predict(X_fold_val) 

 

        # Calculate accuracy and store it 

        accuracy_fold_val = calculate_accuracy(y_fold_val, y_pred_fold_val) 

        accuracy_scores.append(accuracy_fold_val) 

A 10-fold cross-validation strategy was employed to assess the classifier's performance 

robustness across different subsets of the training data. The training data were divided into 10 

folds, ensuring each fold contains a balanced representation of both classes for training and 

validation. The classifier was trained on each training fold and validated on the corresponding 

validation fold to evaluate its generalization performance. After iterating over all folds, the 

average accuracy across all folds is calculated by summing up the accuracy scores and dividing 

by the total number of folds. The average accuracy is printed to the console, providing an overall 

assessment of the classifier's performance across the 10 folds. 

Following the training phase, the trained Support Vector Machine (SVM) classifier was 

evaluated on the testing dataset to assess its performance on unseen data. The trained SVM 

classifier was utilized to make predictions on the testing dataset, consisting of previously unseen 

audio samples. The classifier leveraged the extracted Mel-frequency cepstral coefficients 

(MFCC) features to predict the class labels of the testing samples. This evaluation focuses 
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solely on the practical aspects of the experiment, detailing the steps involved in testing the SVM 

classifier and evaluating its performance using various classification metrics. A confusion 

matrix was generated to visualize the distribution of true positive, true negative, false positive, 

and false negative predictions. This matrix provided insights into the classifier's ability to 

correctly classify samples belonging to different classes and identify any potential 

misclassifications. 
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Chapter 6. Results  

In this section, we present the outcomes of our classification experiments aimed at 

distinguishing between queen and non-queen bee sounds using Support Vector Machine (SVM) 

models with 10-fold cross-validation. To ensure robustness and generalizability, we leveraged 

three distinct data sources: the NU project, the OSBH project, and data processed at Stanford 

University. The audio data was carefully divided and categorized into queen and non-queen bee 

sounds, ensuring balanced representation in both the training and testing datasets. This 

preprocessing strategy aimed to facilitate robust model training and evaluation by providing a 

comprehensive and representative sample of bee sounds. Building upon the prepared dataset, 

we now present the outcomes of our classification experiments using a Support Vector Machine 

(SVM) with 10-fold cross-validation.  

6.1. NU DATASET RESULT 

The NU-Hive project was developed by researchers Inês Nolasco and Emmanouil 

Benetos (Nolasco & Benetos, 2018. ). Their work focuses on the automatic recognition of 

beehive sounds. Specifically, the training dataset comprised 929 queen training segments and 

924 non-queen training segments, while the testing dataset included 314 queen testing segments 

and 302 non-queen testing segments (shown as Table 2). 

Data Type 
Number of 
Segments 

Queen Training 929 

No Queen Training 924 

Queen Testing 314 

No Queen Testing 302 

Table 2. NU Data Set Segments. The dataset is divided into four distinct categories based 
on the presence of the queen bee and the purpose of the data (training or testing). 

 
The following table 3 provides detailed accuracy percentages and corresponding file sizes 

for different audio formats represented by various bitrates. 
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Bitrate 

10-Fold 
Validation 
Accuracy 

Testing  
Accuracy 

File Size 
(Bytes) 

Uncompressed 
(WAV) 

98.97% 90.91% 325,105,800 

MP3 64 kpbs 98.22% 85.88% 22,167,345 

MP3 16 kpbs 98.60% 82.63% 11,083,799 

FLAC 98.97% 90.91% 125,039,638 

Table 3. NU Classification Accuracy and File Size. This result is generated by 10-Fold 
validation to increase robustness.  

 
A confusion matrix in Table 4 is a table that is often used to evaluate the performance of 

a classification algorithm. It presents a detailed breakdown of correct and incorrect 

classifications made by the model, providing insights into its effectiveness.  

Audio 
Format 

True 
Positives 

(TP) 

True 
Negatives 

(TN) 

False 
Positives 

(FP) 

False 
Negatives 

(FN) 

WAV 313 247 55 1 

MP3 - 64K 313 216 86 1 

MP3 - 16K 313 196 106 1 

FLAC 313 247 55 1 

Table 4. NU Confusion Matrix. Analyse the four formats performance of the audio 
formats based on the confusion matrices provided. 

 
The classification report serves as a comprehensive evaluation of the performance of our 

classification model in distinguishing between different classes within our dataset. The 

classification report in Table 5 and 6 outlines the precision, recall, and F1-score for each class, 

shedding light on the model's efficacy in correctly predicting instances of each category while 

minimizing false classifications. 

 

Audio Format Precision Recall F1-Score Support 

WAV 1.00 0.79 0.88 302 
MP3 - 64K 1.00 0.72 0.83 302 
MP3 - 16K 1.00 0.65 0.79 302 

FLAC 1.00 0.79 0.88 302 
Table 5. Classification report of No Queen (Precision, Recall, F1-Score, and Support) for 
different audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC) in the NU dataset. 
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Audio Format Precision Recall F1-Score Support 

WAV 0.83 1.00 0.91 314 
MP3 - 64K 0.78 1.00 0.88 314 
MP3 - 16K 0.75 1.00 0.86 314 

FLAC 0.83 1.00 0.91 314 
Table 6. Queen classification report showing precision, recall, and F1-score for different 

audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC). 
 

The Receiver Operating Characteristic (ROC) curve is a fundamental tool in assessing 

the performance of classification models, particularly in scenarios involving binary 

classification tasks. In our research, the ROC curve serves as a critical component in evaluating 

the effectiveness of our classification model in distinguishing between different classes of audio 

data (shown as Figure 12, 13, 14 and 15), specifically targeting the discrimination between 

"Queen" and "No Queen" instances. As shown in Figure 12, the ROC curve for the WAV format 

rises steeply and then levels off near the top. This indicates that the classifier can achieve a high 

true positive rate (sensitivity) with a low false positive rate early in the process. In Figure 13, 

the ROC curve for the MP3 64K format initially rises almost vertically before flattening out. 

The small horizontal portion at the start of the curve indicates that achieving additional true 

positives becomes increasingly difficult without also increasing the number of false positives. 

Figure 14 shows the ROC curve for the MP3 16K format. The curve has a less steep rise and 

does not plateau as quickly as in higher bitrate formats, indicating that the classifier struggles 

more to distinguish between classes at this lower bitrate. Figure 15 presents the ROC curve for 

the FLAC format, which demonstrates strong performance, comparable to that of the WAV 

format. The similarity in their curves suggests that FLAC, like WAV, maintains high accuracy 

in distinguishing between classes. 

 

 
Figure 12. WAV ROC Curve for NU. 
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Figure 13. MP3 64K ROC Curve for NU. 

 

 
Figure 14. MP3 16K ROC Curve for NU. 

 

 
Figure 15. FLAC ROC Curve for NU, whose performance is strong, much like WAV. 
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6.2. OSBH DATASET 

The OSBH (Open Source Beehives) project is a collaborative initiative aimed at 

advancing research and innovation in the field of bee monitoring and conservation. Led by a 

diverse community of researchers, beekeepers, and technology enthusiasts, the OSBH project 

seeks to develop accessible and open-source tools for monitoring bee populations and 

environmental conditions impacting bee health. For the OSBH project, the dataset was divided 

into training and testing segments for both queen and non-queen bee sounds (shown as Table 

7). The following table provides a breakdown of the number of segments in each category: 

Data Type Number of 
Segments 

Queen Training 600 

No Queen Training 600 

Queen Testing 200 

No Queen Testing 144 

Table 7. OSBH Data Set Segments. The dataset is divided into four distinct categories 
based on the presence of the queen bee and the purpose of the data (training or testing). 

 
The following tables 8, 9, 10 and 11 provide a comprehensive analysis of classification 

accuracy, file sizes, confusion matrices, and classification reports for different audio formats—

Uncompressed WAV, MP3 at 64 kbps and 16 kbps, and FLAC—across various aspects of the 

OSBH dataset. This dataset aims to evaluate the classification performance and robustness of 

each audio format in the context of beekeeping monitoring systems. These tables offer valuable 

insights into the accuracy and robustness of each audio format, considering both validation and 

testing scenarios. Additionally, the confusion matrices highlight the distribution of true 

positives, true negatives, false positives, and false negatives, providing further context on 

classification errors. Furthermore, the classification reports offer detailed metrics such as 

precision, recall, and F1-score, enabling a comprehensive assessment of classification 

performance across different audio formats. By examining these metrics collectively, we gain 

a deeper understanding of the strengths and limitations of each audio format in accurately 

classifying audio data in beekeeping monitoring applications. These insights serve as essential 

reference points for optimizing audio format selection and ensuring reliable classification 

performance in diverse beekeeping environments. 
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Bitrate 

10-Fold 

Validation 

Accuracy 

Testing  

Accuracy 

File Size 

(Bytes) 

Uncompressed 
(WAV) 100.00% 99.71% 201,107,113 

MP3 64 kpbs 99.92% 99.42% 13,854,590 
MP3 16 kpbs 99.83% 98.55% 6,927,374 
FLAC 100.00% 99.71% 78,149,773 

Table 8. OSBH Classification Accuracy and File Size. This result is generated by 10-Fold 
validation to increase robustness. 

 

Audio 

Format 

True 

Positives 

(TP) 

True 

Negatives 

(TN) 

False 

Positives 

(FP) 

False 

Negatives 

(FN) 

WAV 200 143 1 0 
MP3 - 64K 199 143 1 1 
MP3 - 16K 199 140 4 1 
FLAC 200 143 1 0 

Table 9. OSBH Confusion Matrix. WAV and FLAC have the least number of errors (1 FP 
each, 0 FN), whereas MP3 - 16K has the highest number of false positives (4) and a single 

false negative. 
 

Audio Format Precision Recall F1-Score Support 

WAV 1.00 0.99 1.00 144 
MP3 - 64K 0.99 0.99 0.99 144 
MP3 - 16K 0.99 0.97 0.98 144 
FLAC 1.00 0.99 1.00 144 

Table 10. Classification report (Precision, Recall, F1-Score, and Support) for different 
audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC) in the No-Queen dataset. 

 
Audio Format Precision Recall F1-Score Support 

WAV 1.00 1.00 1.00 200 
MP3 - 64K 1.00 1.00 1.00 200 
MP3 - 16K 0.98 1.00 0.99 200 
FLAC 1.00 1.00 1.00 200 

Table 11. Classification report (Precision, Recall, F1-Score, and Support) for different 
audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC) in the Queen dataset. 

 
 Analysing the ROC curves based on their shapes and the performance indicated by 
these shapes from the new dataset for OSBH in Figure 16, 17, 18 and 19. 
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Figure 16. WAV ROC curve for OSBH, not fluctuating as NU dataset, assume data 

quality is high. 
 

 
Figure 17. MP3 64K ROC Curve for OSBH, not fluctuating as NU dataset, assume data 

quality is high. 
 

 
Figure 18. MP3 16K ROC Curve for OSBH, not fluctuating as NU dataset, assume data 

quality is high. 
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Figure 19 FLAC ROC Curve for OSBH, whose performance for FLAC is strong, much 

like WAV. 

6.3. STANFORD BEEAUDIO DATASET  

The dataset for the Stanford project, curated by Anna Yang, a student at Stanford 

University, was made publicly available on the Kaggle platform. The dataset comprises audio 

segments of bee sounds meticulously labelled and categorized into queen and non-queen bee 

sounds. The following table 12 provides a breakdown of the number of segments in each 

category: 

Data Type 
Number of 
Segments 

Queen Training 620 

No Queen Training 600 

Queen Testing 201 

No Queen Testing 240 

Table 12. Distribution of data segments for BeeAudio dataset, categorized by type (Queen 
and No Queen) and purpose (Training and Testing). 

 
The following tables 13, 14, 15 and16 provide a comprehensive analysis of classification 

accuracy, file sizes, and performance metrics for different audio formats—Uncompressed 

WAV, MP3 at 64 kbps and 16 kbps, and FLAC—across various aspects of the BeeAudio 

dataset. This additional dataset aims to evaluate the robustness of each audio format in 

accurately classifying audio data under varying conditions. These tables offer valuable insights 

into the effectiveness of each audio format, considering both classification accuracy and 

robustness metrics. By examining these metrics collectively, we gain a deeper understanding 

of the strengths and limitations of each audio format in the context of beekeeping monitoring 

systems, enhancing our ability to make informed decisions in real-world applications. These 
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insights serve as crucial reference points for optimizing audio format selection and ensuring 

robust performance in diverse beekeeping environments. 

 

Bitrate 

10-Fold 

Validation 

Accuracy 

Testing  

Accuracy 

File Size 

(Bytes) 

Uncompressed 
(WAV) 99.75% 99.55% 218,191,812 

MP3 64 kpbs 98.70% 98.05% 14,877,413 
MP3 16 kpbs 97.38% 99.32% 7,438,791 
FLAC 99.75% 99.55% 83,919,220 

Table 13. Comparison of classification accuracy and file sizes for different audio formats 
(Uncompressed WAV, MP3 64 kbps, MP3 16 kbps, and FLAC) in the BeeAudio dataset. 

 

Audio 

Format 

True 

Positives 

(TP) 

True 

Negatives 

(TN) 

False 

Positives 

(FP) 

False 

Negatives 

(FN) 

WAV 199 240 0 2 
MP3 - 64K 199 238 2 2 
MP3 - 16K 198 236 4 3 
FLAC 199 240 0 2 

Table 14. Confusion matrix details for different audio formats (WAV, MP3 - 64K, MP3 - 
16K, and FLAC) in the BeeAudio dataset. 

 
 

Audio Format Precision Recall F1-Score Support 

WAV 0.99 1.00 0.99 240 
MP3 - 64K 0.99 0.99 0.99 240 
MP3 - 16K 0.99 0.98 0.98 240 
FLAC 0.99 1.00 0.99 240 

Table 15. Classification report (Precision, Recall, F1-Score, and Support) for different 
audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC) in the No-Queen classification 

report of the BeeAudio dataset. 
 

Audio Format Precision Recall F1-Score Support 

WAV 1.00 0.99 0.99 201 
MP3 - 64K 0.99 0.99 0.99 201 
MP3 - 16K 0.98 0.99 0.98 201 
FLAC 1.00 0.99 0.99 201 

Table 16. Classification report (Precision, Recall, F1-Score, and Support) for different 
audio formats (WAV, MP3 - 64K, MP3 - 16K, and FLAC) in the Queen classification 

report of the BeeAudio dataset. 
 

 Analysing the ROC curves based on their shapes and the performance indicated by 
these shapes from the new dataset for BeeAudio in Figure 20, 21, 22 and 23. We will examine 
the ROC curves, discussing their shapes and the corresponding AUC values to evaluate the 
classification accuracy of the BeeAudio system under various conditions. 
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Figure 20. WAV ROC Curve for BeeAudio. This dataset has high quality causing the 

curve rises almost vertically. 
 

 
Figure 21. MP3 64K ROC Curve for BeeAudio. This dataset has high quality causing the 

curve rises almost vertically without obvious differences with WAV. 
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Figure 22. MP3 16K ROC Curve for BeeAudio. Despite the slight deviation at the start, 

the ROC curve shape and the AUC of 1.00 indicate that the classifier for MP3 16K 
achieves near-perfect sensitivity (true positive rate) with almost no loss in specificity. 

 

 
Figure 23. FLAC ROC Curve for BeeAudio. The performance for FLAC is strong, much 

like WAV. 

6.4. COMPRESSION PERFORMANCE 

During the experiments, we found notable differences in the compression times for the 

two formats (shown as Figure 24 and 25). For instance, compressing a 10-minute audio file into 

MP3 format took approximately 20 seconds, whereas the same file could be compressed into 

FLAC format in just 2 seconds. This recorded experimental data serves as a basis for evaluating 

the performance of MP3 and FLAC compression in practical applications. The findings will be 

further analysed and discussed in detail in the discussion section of this thesis. The analysis will 

focus on understanding the trade-offs between compression speed, audio quality, and the 

suitability of each format for real-time audio monitoring in beehive environments. 
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Figure 24. MP3 Compression Time, which was implemented by FFmpeg tool. 

 

 
Figure 25. FLAC Compression Time which was implemented by Python audio library. 

6.5. TRANSMISSION PERFORMANCE 

In this experiment, the efficiency of MQTT transmission times for an audio file named 

"QueenBee_Testing_15mins" in three different formats—WAV, MP3, and FLAC—was 

analyzed. The results, as depicted in Figures 26, 27 and 28, revealed distinct transmission times 

for each format. Specifically, the WAV format exhibited a transmission time of 302 seconds, 

contrasting with the MP3 format's swift transmission of 5 seconds. Meanwhile, the FLAC 

format occupied an intermediate position with a transmission time of 104 seconds. These 

findings provide valuable insights into the practical implications of audio format selection in 

real-time applications such as beekeeping monitoring systems. 

 

Figure 26. MQTT transmission time for WAV, costing 302 seconds as evidence to 

evaluate the transmission performance. 
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Figure 27. MQTT transmission time for MP3, which is much faster than WAV. 

 

Figure 28. MQTT transmission time for FLAC shows that FLAC files, while larger than 

MP3 files, are significantly smaller than WAV files. 

The experimental data have been summarized into the Table 17, facilitating direct 

comparative analysis. WAV files, being uncompressed and containing raw audio data, result in 

significantly larger file sizes compared to compressed formats. This large file size is reflected 

in the long transmission time of 302 seconds, indicating that uncompressed audio data requires 

more bandwidth and time to transmit over MQTT, which can lead to increased latency. 

Audio 

Format 

Compression Time 

(seconds) 

Transmission 

Time (seconds) 

WAV N/A 302 

MP3 20 5 

FLAC 2 104 

Table 17. Compression time and transmission time for different audio formats (WAV, 

MP3, and FLAC). 
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On the other hand, MP3 files are highly compressed and designed to reduce file size while 

maintaining reasonable audio quality. The short transmission time of 5 seconds highlights the 

efficiency of the MP3 compression algorithm. The smaller file size allows for faster data 

transfer over MQTT, making MP3 an ideal format for scenarios where bandwidth is limited, or 

quick transmission is required. 

FLAC files, being lossless compressed audio files, retain the original audio quality while 

reducing the file size compared to uncompressed formats like WAV. The transmission time of 

104 seconds shows that FLAC files, while larger than MP3 files, are significantly smaller than 

WAV files. This balance between maintaining high audio quality and achieving moderate file 

compression results in a reasonable transmission time for high-fidelity audio needs. 
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Chapter 7. Discussion 

In this chapter, we delve into a comprehensive discussion, interpretation, and evaluation 

of our results, anchored in the relevant literature. Structured around the objectives of our study 

and theoretical framework, each section scrutinizes our findings in relation to existing research, 

highlighting both similarities and differences. Through this comparative analysis, we aim to 

develop theoretical insights and models, elucidating the impact of waveform on audio 

compression efficiency, distortion characteristics, robustness, and overall findings. 

7.1. IMPACT OF WAVEFORM ON AUDIO COMPRESSION 

The waveform is a graphical representation of an audio signal, showing how the 

amplitude of the sound varies over time. It captures the raw, natural features of the audio, such 

as its intensity, frequency, and temporal characteristics. Different audio formats represent this 

waveform with varying degrees of fidelity, depending on whether they are lossless or lossy 

(Zhang, 2001). 

The waveforms of WAV and FLAC formats are nearly identical, as shown in the figures. 

Both of these formats are lossless, meaning they store audio data without any compression. This 

results in waveforms that preserve all the original details of the audio signal. The peaks and 

troughs in the waveform represent the variations in amplitude, which are faithfully captured in 

both WAV and FLAC formats. The detailed structure of the waveform reflects the full 

frequency content of the audio, including both low and high-frequency components. The precise 

timing of sound events is accurately represented, preserving the natural rhythm and patterns of 

the audio. 

The MP3 format, on the other hand, is a lossy compression format. Its waveform, 

especially at lower bitrates, shows some differences compared to the lossless formats. The MP3 

waveform may appear smoothed out or less detailed, as the compression process removes some 

of the audio information to reduce file size. Certain subtle features of the original audio might 

be lost or altered, leading to a less accurate representation of the natural sound. While the overall 

shape of the waveform is maintained, some of the finer amplitude variations and high-frequency 

details may be diminished. 



 

Page 84 of 105 

The fidelity of the waveform in representing audio features has several implications. 

Higher fidelity waveforms (WAV and FLAC) maintain the full quality of the original audio, 

capturing all nuances and details. This is crucial for applications where audio quality is 

paramount, such as music production and high-fidelity audio playback. Lossless formats 

provide a more accurate and immersive listening experience, as they preserve the natural 

characteristics and subtleties of the sound. For any form of detailed audio analysis, whether for 

scientific research, audio engineering, or machine learning, maintaining the full detail of the 

waveform is essential to ensure accurate and reliable results. 

In summary, the waveform is a natural and fundamental feature of audio, providing a 

detailed representation of how the sound varies over time. Lossless formats like WAV and 

FLAC offer the highest fidelity, preserving all the intricacies and details of the original audio 

signal. In contrast, lossy formats like MP3, while useful for reducing file size, compromise 

some of this detail, which can impact both the perceptual quality and the accuracy of any 

subsequent audio analysis. Understanding these differences is crucial for choosing the 

appropriate audio format based on the specific needs of the application. 

7.2. COMPRESSION EFFICIENCY: SPEED AND DEGREE 

In our research, we evaluated the performance of different audio compression formats, 

focusing specifically on MP3 and FLAC, with WAV as a baseline for uncompressed audio. The 

results of our experiments provided insights into the compression time, transmission time, and 

the degree of compression achieved by each format.  

7.2.1 Degree of Compression  

The degree of compression is a vital factor in determining the efficiency of data 

transmission in the beekeeping industry, particularly when dealing with audio data for hive 

monitoring. Compression reduces the file size, which in turn decreases transmission times, 

enabling more rapid data analysis and response. The following discussion focuses on the degree 

of compression for various audio formats: WAV, MP3 (at different bitrates), and FLAC, as 

evidenced by their file sizes. 

7.2.1.1 MP3 Format 

MP3 employs lossy compression, which significantly reduces file sizes by discarding 

some audio information. Our study evaluated MP3 at two different bitrates: 64 kbps and 16 

kbps. 
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• MP3 64 kbps 

This bitrate results in a file size of 22,167,345 bytes. The compression process for MP3 

at this bitrate takes 20 seconds, with a transmission time of only 5 seconds, totaling 25 seconds. 

This high degree of compression greatly reduces the file size to approximately 6.8% of the 

original WAV file, making it highly efficient for rapid data transmission without severely 

compromising audio quality. 

• MP3 16 kbps 

At this lower bitrate, the file size is further reduced to 11,083,799 bytes. This represents 

about 3.4% of the original WAV file size. The decreased file size translates into even faster 

transmission, with the same total time of 25 seconds for compression and transmission as 

observed at 64 kbps. However, it is essential to consider that lower bitrates may affect the audio 

quality, which could impact the effectiveness of audio-based monitoring systems. 

7.2.1.2 FLAC Format 

FLAC, a lossless compression format, reduces the file size without any loss of audio 

quality. The file size for FLAC is 125,039,638 bytes, which is about 38.5% of the original WAV 

file size. The compression time for FLAC is 2 seconds, with a transmission time of 104 seconds, 

totaling 106 seconds. While not as compact as MP3, FLAC strikes a balance by maintaining 

high audio fidelity with a significantly reduced file size compared to WAV. This makes it 

suitable for applications where audio quality is critical, though with a trade-off in transmission 

speed. 

7.2.1.3 Comparative Analysis 

The degree of compression directly affects file size and transmission time, crucial factors 

for efficient data handling in beekeeping. MP3 formats, particularly at 64 kbps and 16 kbps, 

achieve significant file size reductions, facilitating rapid transmission times. FLAC, while 

offering lossless compression, presents a moderate reduction in file size with longer 

transmission times, balancing quality and efficiency. WAV, with its lack of compression, 

results in large file sizes and slow transmission, making it impractical for real-time applications. 

In conclusion, the degree of compression is a critical factor in optimizing data 

transmission for beekeeping applications. MP3 formats provide significant file size reduction, 

making them suitable for scenarios requiring quick data transfer. FLAC offers a balance 

between file size and audio quality, suitable for applications where maintaining high audio 

fidelity is essential. The uncompressed WAV format, due to its large file size and lengthy 
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transmission time, is less practical for real-time monitoring needs. By carefully considering the 

degree of compression, beekeepers can enhance the efficiency of their data transmission 

processes, ensuring effective and timely management of their bee colonies.  

7.2.2 Speed of Compression and Transmission 

7.2.2.1 Compression Speed 

Compression speed is a critical factor influencing the efficiency of data handling in 

beekeeping applications. The WAV format, being uncompressed, requires no time for 

compression. While this eliminates any delay due to compression, it results in large file sizes 

that subsequently impact transmission times. The MP3 format, which uses lossy compression, 

has a compression time of 20 seconds. This relatively short compression period is balanced by 

the significant reduction in file size, making MP3 an efficient choice for quick data turnaround. 

On the other hand, FLAC, known for its lossless compression, requires only 2 seconds for 

compression. This minimal compression time, combined with the advantage of preserving high 

audio quality, makes FLAC a strong candidate for applications needing detailed audio fidelity. 

When comparing these formats, FLAC demonstrates the fastest compression speed, followed 

by MP3, with WAV requiring no compression time but suffering from large file sizes. The brief 

compression times of MP3 and FLAC enhance their practicality for real-time monitoring, where 

swift data processing is essential. Among the three formats, FLAC exhibits the fastest 

compression speed at 2 seconds, followed by MP3 at 20 seconds. WAV, being uncompressed, 

requires no compression time but results in large file sizes. MP3 and FLAC both offer quick 

compression processes, with FLAC being slightly faster and providing lossless audio quality. 

The brief compression times for MP3 and FLAC enhance their practicality for real-time 

beekeeping applications, where swift data processing is essential. 

7.2.2.2 Transmission Speed 

Transmission speed is pivotal in determining the overall efficiency of data transfer in 

beekeeping. The WAV format, with a transmission time of 302 seconds, is the longest among 

the formats due to its large file size. This extended transmission duration can delay real-time 

data analysis and hinder timely interventions, making it less suitable for immediate response 

scenarios. In contrast, the MP3 format significantly reduces transmission time to just 5 seconds, 

thanks to its lossy compression that produces much smaller file sizes. This rapid transmission 

capability is advantageous for real-time monitoring, allowing beekeepers to receive and analyze 

data promptly, facilitating quick responses to hive issues. FLAC, offering a moderate 

transmission time of 104 seconds, strikes a balance between speed and audio quality. While not 
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as fast as MP3, FLAC's reduced file size compared to WAV enables more efficient transmission 

while maintaining high audio fidelity. Thus, MP3 stands out with the fastest transmission time, 

making it the most efficient format for rapid data transfer. FLAC provides a good balance of 

speed and quality, suitable for applications where audio fidelity is crucial. The WAV format, 

with its lengthy transmission time, is the least efficient in terms of speed, limiting its practicality 

for real-time monitoring. Considering transmission speed when selecting an audio format can 

enhance the effectiveness of beekeeping monitoring systems, ensuring timely and accurate data 

management. MP3 stands out with the fastest transmission time of 5 seconds, making it the 

most efficient format for rapid data transfer. FLAC, with a transmission time of 104 seconds, 

offers a compromise between speed and quality, suitable for applications requiring high audio 

fidelity. WAV, with its lengthy transmission time of 302 seconds, is the least efficient in terms 

of speed, limiting its practicality for real-time beekeeping monitoring. 

7.2.2.3 Comparative Analysis 

Comparing the three formats, MP3 demonstrates the highest overall efficiency with the 

shortest total process time of 25 seconds. This includes both compression and transmission, 

making MP3 ideal for real-time monitoring where rapid data transfer and analysis are crucial. 

MP3 is already widely used in many existing beehive monitor systems due to its efficiency in 

data handling and rapid transmission capabilities. 

FLAC, with a total process time of 106 seconds, provides a balanced option for 

applications requiring high audio fidelity. Despite its longer transmission time compared to 

MP3, FLAC offers a reasonable compromise between speed and quality. FLAC is a format that 

we want to explore further because of its feature of maintaining high audio quality without loss, 

which can be beneficial for detailed audio analysis in beekeeping applications. 

WAV, with its lengthy transmission time of 302 seconds and no compression, is the least 

efficient, limiting its practicality for real-time applications due to the significant delay in data 

availability. While WAV preserves the highest audio quality, its impractical transmission speed 

makes it less suitable for dynamic and responsive hive monitoring. 

In scenarios where accuracy is a priority over speed, such as research studies or 

applications requiring detailed audio analysis, FLAC stands out as the optimal choice. Its ability 

to maintain the integrity of audio data ensures that beekeepers can make informed decisions 

based on the most accurate and reliable information available. Therefore, when precision and 
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fidelity are paramount, FLAC should be the preferred option for audio data transmission in 

beekeeping monitoring systems. 

7.3. DISTORTION CHARACTERISTICS 

Distortion introduced by audio compression formats can significantly impact the 

effectiveness of machine learning models used in beehive monitoring. Analyzing the distortion 

characteristics of WAV, MP3, and FLAC formats reveals important insights into their relative 

performance and suitability for accurately classifying beehive audio data. 

7.3.1 Impact on Classification Accuracy 

The accuracy of classification models is directly influenced by the quality of the input 

audio data. In our experiments, both WAV and FLAC formats maintained high validation and 

testing accuracy, indicating that these formats preserve the essential characteristics of the audio 

signals needed for accurate classification. This preservation is crucial in beehive monitoring, 

where distinguishing between subtle audio cues of "Queen" and "No Queen" states is essential. 

In contrast, MP3 format showed a decline in testing accuracy, especially at lower bitrates. 

The lossy nature of MP3 compression introduces distortions that degrade the audio quality, 

leading to a reduced ability of the classification model to accurately identify the different states. 

This decline in accuracy highlights the risk of using highly compressed lossy formats in critical 

monitoring applications where precision is paramount. 

For beehive monitoring, maintaining high classification accuracy is vital to correctly 

identify the health and activity of the hive. Formats like WAV and FLAC, which preserve audio 

fidelity, ensure that critical audio details are not lost, thereby supporting reliable model 

performance. The drop in accuracy observed with MP3 suggests that using lossy compression 

can lead to misidentifications, potentially compromising the ability to monitor beehive 

conditions accurately. 

7.3.2 Classification Report 

The precision, recall, and F1-score metrics further illuminate the impact of distortion on 

classification performance. For the "No-Queen" state, both WAV and FLAC achieved the 

highest recall (0.79) and F1-score (0.88), demonstrating their reliability in correctly identifying 

the absence of a queen. MP3, particularly at lower bitrates, exhibited lower recall and F1-scores, 

indicating an increased rate of false negatives and overall reduced performance. 
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For the "Queen" state, WAV and FLAC again outperformed MP3, with precision and 

recall values of 0.83 and 1.00, respectively, resulting in an F1-score of 0.91. MP3’s precision 

dropped to 0.78 at 64 kbps and 0.75 at 16 kbps, with corresponding F1-scores of 0.88 and 0.86. 

These results suggest that the distortions introduced by MP3 compression lead to 

misclassifications, potentially impacting the accuracy of beehive health assessments. 

High precision and recall are essential in beehive monitoring to ensure accurate detection 

of queen presence or absence. The superior performance of WAV and FLAC in these metrics 

indicates their suitability for such applications, as they reduce the likelihood of false positives 

and negatives. In contrast, the poorer performance of MP3, particularly at lower bitrates, 

underscores the challenges posed by lossy compression in maintaining reliable monitoring 

systems. 

7.3.3 Confusion Matrix 

WAV and FLAC formats demonstrate a high number of true positives and true negatives 

with minimal false positives, indicating their robustness in maintaining audio integrity. MP3 

formats, especially at lower bitrates, show increased false positives, reflecting the negative 

impact of lossy compression on model performance. The higher rate of false positives with 

MP3 suggests that the format introduces artifacts that are misinterpreted by the classification 

model, potentially leading to incorrect assessments in a beehive monitoring system. 

For beehive monitoring, minimizing false positives and false negatives is critical to 

ensure accurate and reliable hive health assessments. The results for WAV and FLAC, showing 

lower false positives and negatives, highlight their effectiveness in preserving audio quality, 

which is crucial for accurate model performance. The increased false positives in MP3 formats 

indicate potential issues with misinterpretation of audio data, suggesting that lossy compression 

can compromise the reliability of beehive monitoring systems. 

7.3.4 Impact on ROC Curve 

 In our research, we have employed ROC (Receiver Operating Characteristic) curves as 

a key metric to evaluate the performance of our classification model in distinguishing between 

different classes of audio data within beehive environments. Specifically, our model aims to 

discriminate between audio recordings that indicate the presence of a "Queen" bee and those 

that indicate "No Queen". The effectiveness of the model is quantified using the Area Under 

the Curve (AUC) values derived from the ROC curves for various audio formats including 

WAV, MP3 (at 64K and 16K bitrates), and FLAC. 
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Both WAV and FLAC formats achieved the highest AUC values of 0.86. The ROC curves 

for these formats rise steeply towards the top-left corner, indicating high sensitivity and low 

false positive rates. This performance can be attributed to the lossless nature of these formats, 

which preserve the full range of audio frequencies and nuances essential for accurately 

detecting the presence of the queen bee. The ability to maintain high audio quality without 

compression artifacts ensures that the subtle audio cues associated with the queen bee are not 

lost, thereby enhancing the model’s accuracy. The MP3 format at 64K bitrate showed a slightly 

lower AUC of 0.82, while the 16K bitrate had the lowest AUC of 0.79. The ROC curves for 

these formats indicate a more gradual rise, reflecting a moderate trade-off between true positive 

and false positive rates. The decrease in AUC with higher compression rates suggests that 

significant audio details are lost due to compression, which adversely affects the model’s ability 

to distinguish between "Queen" and "No Queen" instances. The compression artifacts and 

reduced audio fidelity in MP3 formats, especially at lower bitrates, result in the loss of crucial 

audio signals necessary for precise classification. 

The ROC curve analysis underscores the importance of audio format selection in beehive 

audio monitoring. The high AUC values for lossless formats (WAV and FLAC) indicate that 

these formats are more suitable for accurately detecting queen bee presence due to their ability 

to preserve the integrity of the audio signals. This is particularly critical in beehive monitoring, 

where the detection of subtle audio cues such as the buzzing frequency and patterns associated 

with the queen bee is crucial. Conversely, while compressed formats like MP3 offer advantages 

in terms of reduced file sizes and storage efficiency, they come at the cost of decreased 

classification accuracy. This trade-off needs to be carefully considered depending on the 

specific requirements of the monitoring system. For applications where high accuracy is 

paramount, such as in scientific research or critical beekeeping operations, the use of lossless 

formats like WAV or FLAC is recommended. However, in scenarios where storage constraints 

are significant, and a slight reduction in accuracy is acceptable, higher bitrate MP3 formats 

might still be viable. 

7.4. ROBUSTNESS 

Robustness in machine learning models refers to their ability to maintain performance 

across different datasets and varying conditions. In the context of beehive monitoring, this 

robustness ensures that the classification models can reliably detect queen presence or absence 

across diverse audio recordings from different environments and equipment. To evaluate the 
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robustness of our models, we analysed their performance on the OSBH (Open Source Beehive) 

and Stanford BeeAudio datasets, comparing the results with our primary dataset. 

7.4.1 Performance on OSBH Dataset 

The OSBH dataset results underscore the reliability of the models across various audio 

formats. Uncompressed WAV and FLAC formats maintained high accuracy, demonstrating 

their robustness in preserving audio fidelity essential for accurate classification. Despite a slight 

reduction in performance, MP3 formats still exhibited strong accuracy, highlighting their 

resilience in maintaining high classification accuracy even with lossy compression. 

The strong performance of WAV and FLAC formats on the OSBH dataset reaffirms their 

suitability for critical monitoring applications. MP3, despite its lossy nature, provides robust 

enough performance for less critical monitoring tasks or when storage efficiency is paramount. 

This robustness ensures that the monitoring system can adapt to different data sources and still 

deliver reliable results. 

7.4.2 Performance on Stanford BeeAudio Dataset 

The Stanford BeeAudio dataset results similarly reinforce the robustness of our models. 

Uncompressed WAV and FLAC formats again achieved high accuracy, illustrating their 

effectiveness in maintaining audio quality and classification accuracy across datasets. MP3 

formats showed slightly more variation but still delivered reliable results, suggesting that lossy 

compression effects can vary based on specific dataset characteristics. 

The consistently high performance of WAV and FLAC formats across different datasets 

ensures that beehive monitoring systems can be deployed in various environments without 

compromising accuracy. The unexpected robustness of MP3 at lower bitrates under certain 

conditions offers flexibility in storage and transmission strategies, ensuring reliable monitoring 

results even with compressed audio formats. 

7.5. FINDINGS 

MP3 offers the fastest transmission time, but it does so at the expense of audio quality 

due to lossy compression. WAV, despite offering the best audio quality, is impractical for rapid 

transmission due to its large file size. FLAC provides a middle ground, offering significant 

reductions in transmission time compared to WAV, while preserving audio quality, making it 

an optimal choice for applications where maintaining audio fidelity is important. This aligns 
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with the research gap focusing on compression without feature loss, highlighting FLAC as a 

suitable format for preserving audio features while enabling more efficient data transmission. 
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Chapter 8. Conclusions and Future Works 

The research aimed to address the challenges associated with audio data compression in 

beehive monitoring by exploring the feasibility and effectiveness of using the FLAC 

compression format. This was accomplished through a systematic approach encompassing the 

evaluation of compression techniques, MFCC feature extraction, and machine learning models. 

Our experiments compared the performance of FLAC, MP3, and uncompressed WAV formats 

across three datasets, each representing different beehive conditions and audio environments. 

The goal was to determine how well these formats preserved the essential acoustic features 

necessary for accurate hive condition analysis. 

8.1. CONCLUSIONS 

The research aimed to address the challenges associated with audio data compression in 

beehive monitoring by exploring the feasibility and effectiveness of using the FLAC 

compression format. This was accomplished through a systematic approach encompassing the 

evaluation of compression techniques, MFCC feature extraction, and machine learning models. 

Our experiments compared the performance of FLAC, MP3, and uncompressed WAV formats 

across three datasets, each representing different beehive conditions and audio environments. 

The goal was to determine how well these formats preserved the essential acoustic features 

necessary for accurate hive condition analysis. 

8.1.1 Contribution 

This thesis makes significant contributions to the field of smart beekeeping by 

demonstrating the efficacy of FLAC compression in reducing the resource consumption without 

feature loss, thereby without compromising AI performance. By validating that FLAC 

maintains the same classification accuracy as uncompressed formats, this research offers a 

practical solution for efficient data storage and transmission. Additionally, by comparing FLAC 

with other codecs, the thesis provides empirical evidence on highlighting FLAC as a superior 

option for resource-constrained beehive monitoring systems. These findings advance technical 

knowledge in audio-based beehive monitoring and propose practical solutions to enhance the 
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efficiency and effectiveness of beekeeping monitoring systems, laying a foundation for future 

research and innovation in smart agriculture. 

8.1.2 Methodology 

In the methodology phase, the Free Lossless Audio Codec (FLAC) was implemented to 

balance storage efficiency with audio fidelity. The encoding process of FLAC involves 

segmenting the audio signal into blocks, predicting the signal using a model based on past 

samples, and encoding the prediction error using lossless methods such as Rice coding. This 

step-by-step encoding preserves the original audio data while achieving compression. During 

decoding, the process reverses: the encoded data is decoded to reconstruct the prediction error, 

which, when combined with the prediction model, recreates the original audio signal without 

any loss of information. This ensures that FLAC maintains the integrity of the audio waveform, 

as demonstrated by waveform figures that illustrate the indistinguishable similarity between 

FLAC and the original WAV files. These comparisons highlight FLAC's ability to reduce file 

size significantly without compromising audio quality, making it ideal for applications where 

maintaining high fidelity is paramount. 

Secondly, Mel-Frequency Cepstral Coefficients (MFCCs) are widely adopted for their 

efficacy in capturing crucial spectral features from audio signals. The MFCC computation 

begins with pre-emphasis to enhance high-frequency components, followed by segmentation 

into short frames and application of windowing functions to mitigate spectral leakage. Each 

frame undergoes a Fourier Transform to convert it into the frequency domain, where it is then 

passed through a Mel Filterbank that mimics the human auditory system's frequency sensitivity. 

The resulting filterbank energies are logarithmically compressed to approximate human 

perception of sound intensity. Finally, a Discrete Cosine Transform (DCT) is applied to 

decorrelate the coefficients, yielding a compact representation of the audio's spectral 

characteristics. This process allows MFCCs to efficiently capture and encode essential aspects 

of the audio signal. Importantly, the Discrete Cosine Transform (DCT) is particularly suitable 

for machine learning analysis due to its ability to decorrelate the coefficients, providing a 

concise yet informative representation that enhances the efficiency and effectiveness of 

subsequent classification tasks. This makes MFCCs indispensable for tasks requiring robust 

feature extraction and analysis, such as speech recognition, music genre classification, and in 

our case, distinguishing queen and no queen states in smart beehive monitoring. 

Finally, Support Vector Machine theory revolves around finding the optimal hyperplane 

that separates different classes in a high-dimensional feature space. It achieves this by 
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maximizing the margin between the classes, which enhances generalization and reduces 

overfitting. SVM is particularly suitable as a supervised learning algorithm due to its ability to 

handle complex, non-linear relationships in data through kernel functions, such as the radial 

basis function (RBF) kernel. SVM aims to minimize classification errors while maintaining a 

maximum margin between support vectors, which are the data points closest to the decision 

boundary. This approach ensures robust classification performance and is well-suited for tasks 

like distinguishing queen and no queen states in beehive monitoring, where the data can be 

high-dimensional and non-linear. 

These methodologies form the backbone of our research, providing a cohesive framework 

for effective beehive monitoring. By integrating these advanced techniques, we have addressed 

key challenges and demonstrated significant improvements in the detection and analysis of bee 

colony health. 

8.1.3 Experiment 

The experimental phase of this study provided significant insights into the process of 

classifying bee sound recordings, including the effectiveness of data segmentation, the impact 

of audio compression, the utility of feature extraction methodologies, and the operationalization 

of the classification system using MQTT. 

The segmentation of bee sound recordings into 3-second clips proved to be an effective 

approach for creating manageable and analyzable audio samples. This segmentation allowed 

for a detailed examination of the audio signals and facilitated the classification task by 

providing a consistent unit of analysis. Labeling these segments as "queen" and "no queen" 

categories was crucial in addressing the research question, enabling a focused and relevant 

classification task. 

Next, the segmented audio clips underwent compression using FFmpeg. Both MP3 and 

FLAC formats were employed to evaluate the impact of different compression methods. MP3 

compression was tested at bitrates of 64 kbps and 16 kbps to assess the effect of lossy 

compression, while FLAC compression was used as a lossless alternative to preserve audio 

quality. 

A critical component of this study was the integration of the classification system with 

MQTT (Message Queuing Telemetry Transport) for real-time data transmission. The 

implementation of MQTT facilitated the efficient and reliable communication of classification 

results. This integration enabled the system to send alerts and updates promptly, ensuring that 
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users could respond to changes in the beehive environment in a timely manner. The MQTT 

protocol proved to be a robust solution for the transmission of classification results, 

demonstrating its suitability for real-time monitoring applications. 

In the feature extraction phase, Mel-Frequency Cepstral Coefficients (MFCCs) were 

utilized to capture the essential spectral properties of audio signals. MFCCs are effective 

because they divide the audio spectrum into mel-frequency bands spaced according to the 

human perception of sound. To extract MFCC features from audio segments, the Librosa library 

in Python was used, specifically the librosa.feature.mfcc function. By invoking this function 

with the appropriate parameters, a matrix of MFCC coefficients representing the spectral 

characteristics of the audio segment was obtained. In this phase, four audio files were 

meticulously chosen, each representing distinct formats: WAV, MP3 at 64Kbps, MP3 at 

16Kbps, and FLAC. Leveraging the powerful capabilities of librosa feature melspectrogram 

function, mel spectrograms were computed for each audio file, encapsulating their frequency 

distributions over time. This comprehensive approach enabled a nuanced comparison of 

spectrogram characteristics among different formats. 

The Support Vector Machine (SVM) classifier trained on MFCC features demonstrated 

strong performance in distinguishing between "queen" and "no queen" bee sounds. The cross-

validation results indicated that the classifier generalized well to unseen data, achieving high 

accuracy and low error rates. This highlighted the effectiveness of the SVM classifier in this 

specific audio classification task. The classifier's performance was evaluated using various 

metrics: accuracy of the SVM classifier, confusion matrix provided a detailed breakdown of 

true positives, true negatives, false positives, and false negatives and the classification report 

included precision, recall, and F1-score for each class ("queen" and "no queen"). These metrics 

provided insights into the classifier's effectiveness in correctly identifying each class. 

8.1.4 Findings 

The findings of our experiments are discussed by integrating the evaluation metrics across 

different audio formats: WAV, MP3, and FLAC. These metrics include waveform 

characteristics, classifier accuracy, compression degree and speed, and transmission speed. 

Waveform Characteristics and Classifier Accuracy 

The WAV format provided the most accurate and detailed waveform representation, 

preserving all audio details due to its uncompressed nature. This high fidelity was evident in 

the spectrograms, which showed consistent frequency and amplitude patterns. Consequently, 
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the Support Vector Machine (SVM) classifier trained on Mel-Frequency Cepstral Coefficients 

(MFCC) features extracted from WAV files achieved the highest accuracy. The rich and 

unaltered audio information in WAV files contributed significantly to the classifier's strong 

performance in distinguishing between "queen" and "no queen" bee sounds. 

In contrast, MP3 files, especially at lower bitrates like 16 kbps, exhibited noticeable 

artifacts and loss of high-frequency details. These artifacts were visible in the spectrograms as 

irregular patterns and reduced frequency information. The SVM classifier trained on MP3 files 

showed lower accuracy compared to WAV, as the lossy compression process led to the loss of 

critical audio features. However, at a higher bitrate of 64 kbps, the quality of MP3 files 

improved, resulting in better classifier performance, though still not matching the accuracy 

achieved with WAV or FLAC files. 

FLAC, being a lossless format, maintained high-quality waveforms similar to WAV. The 

spectrograms for FLAC files showed well-defined frequency patterns, indicating no loss of 

audio information. Consequently, the SVM classifier trained on FLAC files performed 

comparably well to WAV, achieving high accuracy due to the preservation of all audio features. 

This demonstrates FLAC's suitability for tasks requiring high-fidelity audio analysis without 

the drawbacks of lossy compression. 

Compression Degree, Speed, and Transmission Speed 

When considering compression degree and speed, MP3 files offered the highest 

compression, significantly reducing file size, enhancing efficiency in storage and processing. 

However, this compression came at the cost of audio quality, especially at lower bitrates. The 

reduced file size of MP3 files also resulted in the fastest transmission speeds, making them ideal 

for applications where storage and bandwidth are limited, such as streaming and real-time audio 

transmission. 

WAV files, being the original and uncompressed format, do not require compression. 

This results in slower transmission speeds and larger storage requirements due to their large 

size. While WAV files offer the best audio quality, their lack of compression can be a drawback 

for practical applications that need efficient data management and transmission. 

FLAC files, although larger than MP3 files, provide lossless compression, meaning no 

audio information is lost. FLAC has the fastest compression speed among the formats we 

evaluated, making it efficient for scenarios where maintaining audio quality is critical. The 

moderate file size of FLAC compared to WAV results in moderate transmission speeds, 
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balancing the need for high-quality audio with practical considerations for storage and 

bandwidth. 

Limitation 

Despite the positive findings, the research has some limitations. The datasets used in the 

experiments, while diverse, may not cover all possible beehive conditions and environmental 

variations. Additionally, the implementation of the SVM models was based on specific 

parameters that may not generalize to all contexts. Further research is needed to test the 

robustness of the findings across a wider range of conditions and to explore the use of different 

machine learning approaches. 

8.2. FUTURE WORKS 

The research opens several avenues for future work, each promising to enhance and 

expand the utility of audio classification and real-time monitoring in various domains. 

One potential avenue for future research is to investigate the application of Free Lossless 

Audio Codec in other agricultural monitoring systems. Given FLAC's ability to compress audio 

without any loss of quality, it could be highly beneficial for other areas of precision agriculture. 

For instance, monitoring animal sounds, soil health, or crop conditions using acoustic signals 

can benefit from FLAC’s lossless compression, ensuring data integrity. By applying FLAC in 

diverse agricultural contexts, researchers can assess its broader utility and potentially develop 

comprehensive monitoring solutions that leverage high-quality audio data for improved 

decision-making and management. 

Another promising direction is to explore the combination of FLAC with advanced AI 

techniques, such as deep learning. Deep learning models, particularly those involving 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have shown 

remarkable success in various audio processing tasks. Integrating FLAC-compressed audio data 

with these sophisticated AI models could further enhance the capabilities of smart beekeeping 

systems. This combination could enable more accurate and nuanced analysis of bee sounds, 

leading to better detection of hive conditions, health issues, and behavioural patterns. 

Additionally, leveraging deep learning could open possibilities for real-time, automated 

monitoring systems that provide actionable insights with minimal human intervention. 

Future work could also focus on exploring alternative codecs that might achieve a better 

balance between audio distortion and resource consumption. While FLAC offers lossless 
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compression, other newer advancements in audio compression might provide efficient lossy 

compression with acceptable levels of distortion. These codecs could potentially reduce the 

computational and storage requirements while maintaining sufficient audio quality for 

classification tasks. By systematically evaluating various codecs under different conditions, 

researchers can identify the most suitable options for specific use cases, thereby optimizing the 

trade-off between audio quality and system performance.  
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