Neural network classification of pharmaceutical active ingredient from near infrared spectra

Thumbnail Image
Other Title
Yee, Nigel
Yan, Ashley
Author ORCID Profiles (clickable)
Conference Contribution - Paper in Published Proceedings
Ngā Upoko Tukutuku (Māori subject headings)
neural networks
near infrared spectrometer
active ingredients
Yee, N. G., & Yan, A. (2015, December). Neural Network Classification of Pharmaceutical Active Ingredient from Near Infrared Spectra. In IEEE (Ed.), Paper presented at 2nd Institute of Electrical and Electronics Engineers (IEEE) Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE 2015) (pp.28-34).
This paper presents results from a scoping study undertaken with the intention of demonstrating the applicability of reflectance Near-Infrared (NIR) spectroscopy in classification of pharmaceutical type based on active ingredient. The part of the process selected for the scoping study is the packaging step in the manufacturing of pharmaceuticals. The rationale for the selection of the packaging step is in older processing lines the product is classified after tablet coating and before blister packaging using visual automatic inspection techniques however for 100% conformance a more discriminating technique is required. In this study, NIR spectra (with wavelengths between 400nm and 1100nm) were obtained for samples pertaining to 3 different types of pharmaceuticals Quetiapine, Ibuprofen and Paracetamol. The dimensionality of the data set was reduced using Principal Components and the data was feed into a back propagation neural network configured to classify the data based on active ingredient type. The recognition rates achieved in this study were high enough to suggest that NIR spectroscopy is a viable method of ensuring 100% identification of pharmaceutical type prior to packaging for the pharmaceuticals tested.
Institute of Electrical and Electronics Engineers (IEEE)
Link to ePress publication
Copyright holder
Institute of Electrical and Electronics Engineers (IEEE)
Copyright notice
All rights reserved
Copyright license
Available online at
This item appears in: