• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A framework for evaluating anti spammer systems for Twitter

    Ho, K.; Liesaputra, Veronica; Yongchareon, Dr. Sira; Mohaghegh, Dr Mahsa

    Thumbnail
    Share
    View fulltext online
    Twitter_Spam_1_.pdf (340.2Kb)
    Date
    2017-10-20
    Citation:
    Ho, K., Liesaputra, V., Yongchareon, S., & Mohaghegh, M. (2017, October). A Framework for Evaluating Anti Spammer Systems for Twitter. Panetto H. et al. (Ed.), 25th International Conference on Cooperative Information Systems, On the Move to Meaningful Internet Systems. OTM 2017 Conferences. OTM 2017. (pp.online). 10573. 10.1007/978-3-319-69462-7_41.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/4286
    Abstract
    Despite several benefits to modern communities and businesses, Twitter has attracted many spammers overwhelming legitimate users with unwanted and disruptive advertising and fake information. Detecting spammers is always challenging because there is a huge volume of data that needs to be analyzed while at the mean time spammers continue learning and changing their ways to avoid being detected by anti-spammer systems. Several spam classification systems are proposed using various features extracted from the content and user’s information from their Tweets. Nevertheless, no comprehensive study has been done to compare and evaluate the effectiveness and efficiency of these systems. It is not known what the best anti-spammer system is and why. This paper proposes an evaluation framework that allows researchers, developers, and practitioners to access existing user-based and content-based features, implement their own features, and evaluate the performance of their systems against other systems. Our framework helps identify the most effective and efficient spammer detection features, evaluate the impact of using different numbers of recent tweets, and therefore obtaining a faster and more accurate classifier model.
    Keywords:
    Twitter, spam detection, evaluation workbench, feature selection, machine learning
    ANZSRC Field of Research:
    080303 Computer System Security, 080109 Pattern Recognition and Data Mining

    Copyright Notice:
    © Springer International Publishing AG 2017
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Conference Papers [150]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    81
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga