• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Dissertations and Theses
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A scenario based performance analysis of VANET protocols

    Alobaidi, Naji

    Thumbnail
    Share
    View fulltext online
    MComp_2017_Naji Alobaidi_1373749_Final Research (003).pdf (2.247Mb)
    Date
    2017
    Citation:
    Alobaidi, N. (2017). A scenario based performance analysis of VANET protocols. An unpublished thesis submitted in partial fulfilment of the requirements for the degree of Master of Computing, Unitec Institute of Technology, New Zealand.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/4144
    Abstract
    Inter-vehicle communication is a major part of the Intelligent Transportation Systems (ITS). Vehicular Ad-Hoc Network (VANET) was primarily developed to improve safety and comfort for vehicles, passengers and drivers. Because of high mobility and changeable infrastructure, there are many challenges in such networks one of which is routing. Existing routing algorithms for VANET are divided into five major classes: position based, cluster based, broadcast,geocast based, and topology based routing protocols. Different researches for ITS compare existing routing protocols for VANET and evaluated their performance. Nevertheless, most of them are far from realistic conditions. Since these systems often consist of many nodes, a real-world test is very costly and time consuming. Therefore, most VANET researches use simulators which allow fast and cheap evaluation of protocols and applications. The simulation scenarios are controllable and reproducible. In simulation studies models are used to make a judgement on real-world viability. The model must reflect the real-world conditions to make the results reliable. In this thesis we provide a realistic model for Auckland using Nakagami propagation model and evaluate the performance of several popular VANET protocols (AODV, DSR, OLSR,DSDV,GPSR, CBRP, and ZRP). We use Nakagami propagation model and investigate the impact of the shape factor of the Nakagami model on the performance of each protocol for two real scenarios: urban area and highway. For the urban area, we select Auckland CBD with maximum speed of 50 km/h. For the highway area, we select Auckland motorway with maximum speed of 100 km/h. The simulations are carried out using OMNET++ and SUMO simulators, with scenarios configured to reflect real-world conditions. We compare the performance of the protocols using three metrics: packet error ratio, end-to-end delay and throughput. The experimental results show that the performance of the protocols depend on several factors which include: number of vehicles, speed of vehicles, shape factor, etc. In general, DSR has the highest throughput for both scenarios in all conditions. In terms of packet error rate, for most of the cases in the CBD scenario, CBRP outperforms other protocols while for the motorway scenario, in most of the cases, the best protocol is ZRP. The lowest End to End Delay (EED) is achieved for both scenarios when using OLSR.
    Keywords:
    Intelligent Transportation Systems (ITS), Vehicular Ad-Hoc Network (VANET), VANET protocols, routing protocols, propagation models, performance evaluation, location finding
    ANZSRC Field of Research:
    080503 Networking and Communications
    Degree:
    Master of Computing, Unitec Institute of Technology
    Supervisors:
    Ardekani, Iman
    Copyright Holder:
    Author

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Dissertations and Theses [90]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    136
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga