• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An elastoplastic solution for earthquake resistant rigid timber shear walls

    Loo, Wei; Quenneville, P.; Chouw, N.

    Thumbnail
    Share
    View fulltext online
    47_15_06.pdf (703.7Kb)
    Date
    2014-09
    Citation:
    Loo, W.Y., Quenneville, P., & Chouw, N. (2014). An elastoplastic solution for earthquake resistant rigid timber shear walls. Paper presented at INTER - International Network on Timber Engineering Research, September, 2014, Bath, United Kingdom.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/3912
    Abstract
    In terms of seismic performance, timber structures have been observed to perform well, in spite of timber being an inherently non-ductile material. This is due mainly to the ductility of the steel-to-timber connections, and the way in which they interact with the timber material. If these connections are detailed to deform plastically, while keeping the timber members elastic, the overall structure achieves ductility. For nailed sheathing-to-framing shear walls and floor diaphragms, the New Zealand structural timber code, NZS3603:1993 [1] allows ductilities of up to four to be assumed. The issue with such an approach is that in a design level earthquake, the deformations required to achieve ductility often renders the structure irreparable, or at least requiring expensive repairs. Recent developments in engineered lumber products have seen the availability of mass timber panels of tremendous strength and stiffness. These include CLT (cross laminated timber) and LVL (laminated veneer lumber) panels. Under typical loading conditions these panels are essentially rigid, and the experiments of Popovski and Karacabeyli [2] demonstrate that the hysteretic behaviour is largely governed by the plastic deformations in the steel bracket connections attaching the walls to the floor. The hysteretic loops bear some resemblance to those of sheathing to framing shear walls, the main difference being they are more tightly pinched. The seismic performance of such walls is adequate, however, damage is still a consequence after an earthquake.
    Keywords:
    shear walls, elasto-plastic, slip-friction connectors, energy-dissipation, ductility, timber structures, earthquake-resistant, rocking walls
    ANZSRC Field of Research:
    090504 Earthquake Engineering
    Copyright Holder:
    Authors

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Construction + Engineering Conference Papers [211]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    12
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga