Show simple record

dc.contributor.authorLoo, Wei
dc.contributor.authorQuenneville, P.
dc.contributor.authorChouw, N.
dc.date.accessioned2017-08-02T23:52:04Z
dc.date.available2017-08-02T23:52:04Z
dc.date.issued2014-03
dc.identifier.urihttps://hdl.handle.net/10652/3910
dc.description.abstractThe use of rigid engineered timber panels, such as cross-laminated-timber, in construction is increasing around the world, particularly in Europe and Australasia. Typically the panels rely on nailed or screwed steel plates for hold-downs and shear keys. However, this can mean the level of ductility is difficult to quantify. Furthermore ductile wall behaviour will inevitably be associated with permanent damage to the connections. There have been calls from designers for a solution in which the level of ductility can be predicted and achieved with confidence. The authors propose a novel, yet simple, slipfriction device that limits activated forces on a structure during an earthquake by allowing it to slightly rock. An experimental LVL wall was fitted with these devices acting as hold-downs. The shear key consisted of steel rods bearing against upright steel plates along the base of the wall. Under cyclic displacement tests, the wall demonstrated excellent elasto-plastic behaviour. The predicted wall strength from theory, matched, in general, the forces measured, while ductility levels can be as large as the designer desires, within obvious limits. Even under only self-weight, the wall readily descended at one end, while uplifting at the other. The results suggest that structures of engineered lumber can perform with reliable levels of ductility and remain free from damage.en_NZ
dc.language.isoenen_NZ
dc.publisherNew Zealand Society for Earthquake Engineering (NZSEE)en_NZ
dc.relation.urihttp://db.nzsee.org.nz/2014/oral/65_Loo.pdfen_NZ
dc.subjectsheer wallsen_NZ
dc.subjectrocking wallsen_NZ
dc.subjectslip-friction connectorsen_NZ
dc.subjectearthquake-resistanten_NZ
dc.subjectself-centringen_NZ
dc.subjecttimber structuresen_NZ
dc.subjectductilityen_NZ
dc.titleElasto-plastic behaviour of a rigid timber shear wall with slip-friction connectorsen_NZ
dc.typeConference Contribution - Oral Presentationen_NZ
dc.date.updated2017-07-11T00:04:50Z
dc.rights.holderAuthorsen_NZ
dc.subject.marsden090504 Earthquake Engineeringen_NZ
dc.identifier.bibliographicCitationLoo, W.Y., Quenneville, P., & Chouw, N. (2014, March). Elasto-plastic behaviour of a rigid timber shear wall with slip-friction connectors. Paper presented at New Zealand Society for Earthquake Engineering, Auckland, New Zealand.en_NZ
unitec.publication.titleNew Zealand Society for Earthquake Engineeringen_NZ
unitec.conference.titleNew Zealand Society for Earthquake Engineering (2014)en_NZ
unitec.conference.locationAuckland, New Zealanden_NZ
unitec.conference.sdate2014-03-21
unitec.conference.edate2014-03-23
unitec.peerreviewedyesen_NZ
dc.contributor.affiliationUniversity of Aucklanden_NZ
unitec.identifier.roms57816en_NZ
unitec.institution.studyareaConstruction + Engineering


Files in this item

Thumbnail

This item appears in

Show simple record


© Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142