• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed Incremental wLPSVM Learning

    Zhu, Lei; Ban, Tao; Ikeda, K.; Pang, P.; Sarrafzadeh, Hossein

    Thumbnail
    Share
    View fulltext online
    Distributed_Incremental_wLPSVM_Learning.pdf (338.2Kb)
    Date
    2016-12
    Citation:
    Zhu, L., Ban, T., Ikeda, K., Pang, P., & Sarrafzadeh, A. (2016, December). Distributed Incremental wLPSVM Learning. - (Ed.), IEEE Symposium Series on Computational Intelligence (SSCI) (paper 45)
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/3834
    Abstract
    Weighted linear proximal support vector machine (wLPSVM) is known as an efficient binary classification algorithm with good accuracy and class-imbalance robustness. In this work, original batch wLPSVM is facilitated with distributed incremental learning capability, which allows simultaneously learning from multiple streaming data sources that are geographically distributed. In our approach, incremental and distributed learning are solved as a merging problem at the same time. A new wLPSVM expression is derived. In the new expression, knowledge from samples are presented as a set of class-wised core matrices, and merging knowledge from two subsets of data can be simply accomplished by matrix addition. With the new expression, we are able to conduct incremental and distributed learning at the same time via merging knowledge from multiple incremental stages and multiple data sources.
    Keywords:
    wLPSVM, weighted linear proximal support vector machines, class imbalance learning, distributed incremental learning
    ANZSRC Field of Research:
    170203 Knowledge Representation and Machine Learning
    Copyright Holder:
    Authors

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Conference Papers [150]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    44
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga