• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neural network classification of pharmaceutical active ingredient from near infrared spectra

    Yee, Nigel; Yan, Ashley

    Thumbnail
    Share
    View fulltext online
    IEEE_format_paper_2015.pdf (445.8Kb)
    Date
    2015-12
    Citation:
    Yee, N. G., & Yan, A. (2015, December). Neural Network Classification of Pharmaceutical Active Ingredient from Near Infrared Spectra. In IEEE (Ed.), Paper presented at 2nd Institute of Electrical and Electronics Engineers (IEEE) Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE 2015) (pp.28-34).
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/3407
    Abstract
    This paper presents results from a scoping study undertaken with the intention of demonstrating the applicability of reflectance Near-Infrared (NIR) spectroscopy in classification of pharmaceutical type based on active ingredient. The part of the process selected for the scoping study is the packaging step in the manufacturing of pharmaceuticals. The rationale for the selection of the packaging step is in older processing lines the product is classified after tablet coating and before blister packaging using visual automatic inspection techniques however for 100% conformance a more discriminating technique is required. In this study, NIR spectra (with wavelengths between 400nm and 1100nm) were obtained for samples pertaining to 3 different types of pharmaceuticals Quetiapine, Ibuprofen and Paracetamol. The dimensionality of the data set was reduced using Principal Components and the data was feed into a back propagation neural network configured to classify the data based on active ingredient type. The recognition rates achieved in this study were high enough to suggest that NIR spectroscopy is a viable method of ensuring 100% identification of pharmaceutical type prior to packaging for the pharmaceuticals tested.
    Keywords:
    pharmaceuticals, neural networks, near infrared spectrometer, active ingredients
    ANZSRC Field of Research:
    080108 Neural, Evolutionary and Fuzzy Computation, 1115 Pharmacology and Pharmaceutical Sciences
    Copyright Holder:
    Institute of Electrical and Electronics Engineers (IEEE)

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Conference Papers [150]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    45
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga