• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vein pattern visualization through multiple mapping models and local parameter estimation for forensic investigation

    Sharifzadeh, Hamid; Zhang, Hengyi; Kong, Adams Wai-Kin

    Thumbnail
    Share
    View fulltext online
    ICPR14_1025_FINAL Uploaded.pdf (647.9Kb)
    Date
    2014
    Citation:
    Sharifzadeh, H. R., Zhang, H., and Kong, A. (2014). Vein Pattern Visualization Through Multiple Mapping Models and Local Parameter Estimation for Forensic Investigation. 22nd International Conference on Pattern Recognition (ICPR), 24-28 August.(Ed.), doi: 10.1109/ICPR.2014.37 (p. 160-165).
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/2972
    Abstract
    Forensic investigation methods based on some human traits, including fingerprint, face, and palmprint, have been developed significantly, but some major aspects of particular crimes such as child pornography still lack of notable research efforts. Unlike common forensic identification methods, techniques for identifying criminals in child pornographic images should be developed based on partial non-facial skin observable in the images because criminals always hide their faces. Few methods published recently have shown the potential of vein patterns visualized from color images as a criminal and victim identification tool. However, these methods have two weaknesses: 1) they use single model to visualize vein patterns hidden in color images, which neglects the diversity of skin properties and 2) even though their parameters are determined automatically by an optimization, they do not adapt to fit local image characteristics. To address these weaknesses, this paper proposes an algorithm composed of a bank of mapping models which transform color images to near infrared (NIR) images for visualizing vein patterns and a local parameter estimation scheme for handling different image characteristics in different regions. Imbalanced data regression is also used to systematically construct the model bank. The proposed algorithm is examined and compared with the previous methods on a database of 920 thigh images from 230 subjects. It outperforms the previous methods.
    Keywords:
    vein patterns, skin marks, forensics, biometrics, child pornography, victim identification, criminal identification
    ANZSRC Field of Research:
    080109 Pattern Recognition and Data Mining
    Copyright Holder:
    ICPR

    Copyright Notice:
    All rights reserved
    Available Online at:
    http://iapr.papercept.net/conferences/conferences/ICPR14/program/ICPR14_ContentListWeb_1.html
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Conference Papers [150]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    55
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga