• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Construction + Engineering
    • Construction + Engineering Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    River flow forecasting using gene expression programming models

    Fernando, Achela; Shamseldin, Asaad; Abrahart, Robert

    Thumbnail
    Share
    View fulltext online
    Fernando - river flow forecasting.pdf (205.5Kb)
    Date
    2012-07
    Citation:
    Fernando, A.K., Shamseldin, A.Y., & Abrahart, R.J. (2012). River flow forecasting using gene expression programming models. In R. Hinkelmann, M.H. Nasermoaddeli, S.Y. Liong, D. Savic, P. Frohle, & K.F. Daemrich (Eds.). Proceedings of the 10th International Conference on Hydroinformatics, HIC 2012, Understanding changing climate and environment and finding solutions (USB ed.). Hamburg, Germany.
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/1945
    Abstract
    River flow forecasting models provide an essential tool to manage water resources, address problems associated with both excesses and deficits, and to find suitable solutions. With changing climate and environmental conditions, real-time methods that rely on data-driven methods of river flow forecasting has become appropriate enabling the use of real data from the recent past rather than relying on models based on the underlying hydrology of the catchment(s). This paper investigates the application of the novel datadriven technique of Gene Expression Programming (GEP) to develop one-day-ahead flow forecasting models for catchments with widely differing characteristics. The method differs from other more hitherto popular data-driven techniques that produce “Black-Box” models in that it generates a transparent model with a mathematical expression for the mapping from input parameters such as antecedent rainfall/runoff to the forecast flow. Four GEP models using GenXproTools® software developed for four catchments show that accurate forecasts fit for purpose can be made from these transparent models.
    Keywords:
    river flow forecasting, gene expression programming, data-driven methods
    ANZSRC Field of Research:
    090509 Water Resources Engineering
    Copyright Holder:
    Authors

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Construction + Engineering Conference Papers [210]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    10
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga