• Login
    View Item 
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Dissertations and Theses
    • View Item
    •   Research Bank Home
    • Unitec Institute of Technology
    • Study Areas
    • Computing
    • Computing Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of voice & video over IP using various IP transition mechanisms

    Shah, Mohib A.

    Thumbnail
    Share
    View fulltext online
    Mohib Shah MComp.pdf (3.068Mb)
    Date
    2011
    Citation:
    Shah, M. A. (2011). Performance of voice & video over IP using various IP transition mechanisms. (Unpublished document submitted in partial fulfilment of the requirements for the degree of Master of Computing). Unitec Institute of Technology. Retrieved from https://hdl.handle.net/10652/1832
    Permanent link to Research Bank record:
    https://hdl.handle.net/10652/1832
    Abstract
    The purpose of this study was to evaluate the performance of voice over IP and video over IP on IP transition mechanisms and clarify the impact of each IP transition mechanism on voice and video transmission under different environments. Studies conducted predicted that IPv4 will soon run out of IP addresses and IPv6 will be the future communication protocol of choice. However, IPv6 still has a challenge ahead, since it does not communicate with IPv4 directly. This issue needs to be resolved prior to establishing IPv6 networks. The migration from IPv4 to IPv6 will take several years, as it is highly complex and expensive for all users around the globe to make a switch. Researchers have developed several methods called IP Translation, Tunnelling and Dual-Stack mechanisms, which allow IPv4 and IPv6 to communicate with each other. In this study, performance of voice and video was measured and analysed on different IP transition mechanisms on a network environment created in a laboratory. This study was carried out in three parts. First part includes; VoIP performance on three IP transition mechanisms using five different platforms. Second part relates to performance comparison of VoIP over pure IP version 4 and IP version 6 with IP transition mechanisms using five voice CODECS. Third part includes; impact of IP transition mechanisms on video protocols. Main focus of this research was to identify the impact caused by IP transition mechanisms on VoIP and video over IP. The results obtained for VoIP showed that performance of VoIP on Windows 7 OS using the three IP transition mechanisms performed much better as compared to the other four operating systems. Observation of packet-loss indicated that Windows based OSs had higher packet loss while Linux based OSs had lesser packet loss over all five CODECS for VoIP trials. Results compiled for delay indicated that IPv6-to-4 and IPv6-in-4 marginally performed better than Dual-Stack mechanism. Video over IP transition mechanisms confirmed that video protocols were highly impacted by encapsulation and de-capsulation process except where FLV protocol was used. FLV was the least impacted by IP transition mechanisms. It also indicated that using IPv6-to-4 and IPv6-in-4 tunnelling mechanisms caused more bandwidth wastage than Dual-Stack mechanism.
    Keywords:
    voice over IP, vdeo over IP, IPv4, IPv6, IP transition, IP Translation, tunnelling, dual-stack
    ANZSRC Field of Research:
    080505 Web Technologies (excl. Web Search)
    Degree:
    Master of Computing, Unitec Institute of Technology
    Supervisors:
    Sathu, Hira; Ganeshan, Kathiravelu
    Copyright Holder:
    Author

    Copyright Notice:
    All rights reserved
    Rights:
    This digital work is protected by copyright. It may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use. These documents or images may be used for research or private study purposes. Whether they can be used for any other purpose depends upon the Copyright Notice above. You will recognise the author's and publishers rights and give due acknowledgement where appropriate.
    Metadata
    Show detailed record
    This item appears in
    • Computing Dissertations and Theses [90]

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga

    Usage

    Downloads, last 12 months
    108
     
     

    Usage Statistics

    For this itemFor the Research Bank

    Share

    About

    About Research BankContact us

    Help for authors  

    How to add research

    Register for updates  

    LoginRegister

    Browse Research Bank  

    EverywhereInstitutionsStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaboratorThis CollectionStudy AreaAuthorDateSubjectTitleType of researchSupervisorCollaborator

    Te Pūkenga

    Research Bank is part of Te Pūkenga - New Zealand Institute of Skills and Technology

    • About Te Pūkenga
    • Privacy Notice

    Copyright ©2022 Te Pūkenga