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DNA barcoding a unique avifauna: an
important tool for evolution, systematics
and conservation
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Abstract

Background: DNA barcoding utilises a standardised region of the cytochrome c oxidase I (COI) gene to identify
specimens to the species level. It has proven to be an effective tool for identification of avian samples. The unique
island avifauna of New Zealand is taxonomically and evolutionarily distinct. We analysed COI sequence data in
order to determine if DNA barcoding could accurately identify New Zealand birds.

Results: We sequenced 928 specimens from 180 species. Additional Genbank sequences expanded the dataset to
1416 sequences from 211 of the estimated 236 New Zealand species. Furthermore, to improve the assessment of
genetic variation in non-endemic species, and to assess the overall accuracy of our approach, sequences from 404
specimens collected outside of New Zealand were also included in our analyses. Of the 191 species represented by
multiple sequences, 88.5% could be successfully identified by their DNA barcodes. This is likely a conservative
estimate of the power of DNA barcoding in New Zealand, given our extensive geographic sampling. The majority
of the 13 groups that could not be distinguished contain recently diverged taxa, indicating incomplete lineage
sorting and in some cases hybridisation. In contrast, 16 species showed evidence of distinct intra-species lineages,
some of these corresponding to recognised subspecies. For species identification purposes a character-based
method was more successful than distance and phylogenetic tree-based methods.

Conclusions: DNA barcodes accurately identify most New Zealand bird species. However, low levels of COI
sequence divergence in some recently diverged taxa limit the identification power of DNA barcoding. A small
number of currently recognised species would benefit from further systematic investigations. The reference
database and analysis presented will provide valuable insights into the evolution, systematics and conservation of
New Zealand birds.

Keywords: New Zealand birds, Cytochrome c oxidase subunit I, COI, Specimen identification, Conservation, DNA
barcodes

Background
DNA barcoding sensu Hebert et al. [1] has been sug-
gested as a means of species identification through com-
parison of a standardised segment of the mitochondrial
genome. In the case of animals, the ‘barcode’ is a 648 bp
region of the 5′ end of the cytochrome c oxidase I (COI)
gene. Since its proposal, DNA barcoding has become a

large scale and well-supported global enterprise [2].
DNA barcoding has two distinct goals; species discovery
and specimen identification [1, 3, 4]. The former, which
involves using DNA barcodes to delimit species bound-
aries or identify novel species has been criticised, for
among other reasons, being a form of DNA taxonomy
and for relying on a single gene to infer species relation-
ships [3, 5, 6]. Although DNA barcoding does not pro-
vide a way of defining new species, the results of such
studies can highlight taxa that require further investiga-
tion. When applied to the latter problem of identifying
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specimens within taxonomically well-resolved groups,
DNA barcoding has proven to be a very useful tool [7, 8].
Traditional taxonomic identification requires increas-

ingly rare expert knowledge and is often difficult or im-
possible for degraded specimens or incomplete remains.
As only a small amount of DNA is required, samples that
would usually be difficult or impossible to identify mor-
phologically such as blood, eggs, embryos, feathers and
faeces can be accurately identified by DNA barcoding.
DNA barcoding has been successfully applied to a variety
of issues, such as the identification of historic specimens
[9, 10], wildlife forensics [11–13], diet analysis [14, 15],
identification of species involved in birdstrike (a collision
between a bird and an aircraft) [16, 17] and conservation
biology (reviewed in Krishnamurthy et al., [18]). In cases
where DNA is highly degraded, a shorter “mini-barcode”
may still enable specimen identification [19]. Furthermore,
where DNA barcodes have highlighted inconsistences
with established taxonomy, more detailed studies using a
range of approaches have been undertaken and in many
cases have been able to inform the processes of molecular
evolution, biogeography and speciation (reviewed in Bar-
reira et al., [20]).
Debate has centred on the best way to use DNA bar-

codes for species identification. Early studies analysed
barcodes exclusively using distance based methods that
numerically quantify the degree of genetic divergence
between taxa e.g. [1, 21]. However, character-based
methods that rely on the presence or absence of diag-
nostic characters (in this case nucleotides), are consid-
ered more consistent with modern taxonomy [22]. Many
early studies also reported the existence of a global ‘bar-
code gap’, a discontinuity between intra- and interspe-
cific genetic divergences. However, most of these studies
had limited congeneric and geographic sampling resulting
in underestimation of intraspecific variation and overesti-
mation of interspecific divergence [8]. Subsequent studies
have found that within well-sampled groups, intra- and in-
terspecific distances usually overlap significantly so that
no global barcode gap exists [8]. However, when used in
combination with character-based methods, distance
based analyses can still provide useful insights [4].
Avian taxonomy is relatively well-resolved making it

an ideal group with which to test the efficacy of DNA
barcoding for specimen identification [23]. The All Birds
Barcoding Initiative (http://www.barcodingbirds.org/)
was launched in 2005 and so far the avifauna of a variety
of different geographic regions has been successfully
DNA barcoded including North America, the eastern
Palearctic, the Neotropics, Scandinavia, the Netherlands,
Japan and Turkey [21, 23–30]. While methodology dif-
fers between each study, generally they report high suc-
cess rates for species identification between 93% (520
species) [26] and 96.6% (226 species) [29].

The avifauna of New Zealand is evolutionarily and taxo-
nomically distinct. After the continent of Zealandia split
from Gondwana approximately 83 million years ago [31],
it became the largest landmass free from ground-dwelling
mammals allowing the avifauna to flourish [32]. Today,
New Zealand is an archipelago of two main islands and
over 330 smaller ones, with a total land area of approxi-
mately 270,000 km2, separated from any other significant
land mass by almost 1500 km [33, 34]. Despite this geo-
graphic isolation, the region has not been completely iso-
lated biologically, as demonstrated by the heterogeneous
composition of the modern avifauna which consists of
representatives from globally diverse taxa [35]. Although
there is strong evidence for vicariant speciation in some
groups, other taxa dispersed to New Zealand following
the break-up of Gondwana with the majority arriving from
Australia or the Pacific [35]. There is a high degree of en-
demism (of 168 contemporary native bird species, 93 are
endemic [36]), which is also indicative of isolation.
Many features of the New Zealand avifauna are reflect-

ive of the country being an archipelago. As with other
islands, representation of groups is highly variable and
the overall diversity of some groups is low [35]. The nu-
merous offshore islands have facilitated allopatric diver-
gence, with some island taxa being recognised as
separate species from their mainland New Zealand rela-
tives [37]. These islands provide breeding grounds for
many seabird species, and as a result New Zealand is
often referred to as the ‘Seabird Capital of the World’
[38]. Nearly a quarter of the world’s 359 seabird species
breed in New Zealand and almost 10% breed exclusively
in New Zealand [38]. Unfortunately, 80% of New Zeal-
and’s native birds are now either ‘threatened’ or ‘at risk’,
mostly as a consequence of predation by introduced
mammalian predators [36]. Native birds are a large part
of New Zealand’s national identity and the country’s
strong conservation ethos has established it as a
world-leader in avian conservation [39].
The composition and evolutionary history of the New

Zealand avifauna is very different from that of other re-
gions where DNA barcoding of birds has been successful.
With the exception of Saitoh et al. [29], most studies have
focused on continental regions. New Zealand however, is
a continental island [40], and its avifauna has characteris-
tics of both a continental remnant and an isolated archi-
pelago [32]. Additionally, seabirds which make up a large
portion of native species, have very different life history
traits and population dynamics than land birds [41]. These
features make it difficult to predict the success of DNA
barcodes for species identification in New Zealand. The
present study aims to: 1) develop a working DNA barcod-
ing database for the birds of New Zealand; 2) determine
the percentage of currently recognized species that can be
discriminated by DNA barcoding; 3) test the potential of
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DNA barcodes to correctly assign specimens to their
nominal species; 4) identify taxa that could benefit from
further investigation.

Results
COI sequence data was obtained from 1416 specimens
representing 211 avian species found within the New Zea-
land region. Over 90% of these species were represented
by > 2 specimens (Table 1). Where available, the sister spe-
cies or a close relative of all New Zealand species were in-
cluded in the analyses (an additional 404 sequences from
107 species). Data was analysed using three methods. The
first two methods are based on analysis of genetic dis-
tances (pairwise distance analysis and neighbour-joining
tree building). The third is a diagnostic character assign-
ment method implemented in the program CAOS [42–
44]. The mean intraspecific uncorrected p-distance was
0.32% (range 0.00–7.94%) and the mean nearest neigh-
bour (i.e. minimum interspecific) p-distance was 4.24%
(range 0.00–13.27%). There was substantial overlap be-
tween these values (see Additional file 1). The optimised
threshold was 0.25% with a cumulative error rate of 15.8%
(see Additional file 2).
The local barcode gap (Fig. 1a) reflects whether or not,

within each species, the genetic distance between each
conspecific individual is smaller than to any allospecific
individual [4]. For New Zealand species with > 1 speci-
men, 17.8% did not have a local barcoding gap meaning
that the difference between the maximum intraspecific
and the minimum interspecific distances for that species
was ≤0 (Table 2). There was no correlation between the
number of specimens per species and the maximum

intraspecific distance (Pearsons correlation coefficient
0.13; p-value = 0.07) (Fig. 1b).
Of the 191 New Zealand species represented by > 1 spe-

cimen, 134 (70.2%) formed well supported monophyletic
groups (≥95% bootstrap support) and 29 (15.2%) were
monophyletic but with < 95% support (Additional file 3).
Nine species (4.7%) were paraphyletic and the remaining
19 species (9.9%) were polyphyletic (Table 2 and
Additional file 3). For species represented by only one spe-
cimen, no bootstrap support could be calculated. How-
ever, with the exception of the fulmar prion (Pachyptila
crassirostris) and the Chatham Island pigeon (Hemiphaga
chathamensis), sequences from these single specimens
formed distinct branches in the tree and did not interfere
with other groupings (Additional file 3). Species with two
or more distinct clusters in the neighbour-joining tree,
supported by high bootstrap values, were identified as
candidates for further investigation. Sixteen species
showed evidence of two or more divergent lineages (>
1.7% divergence with > 82% bootstrap support) (Table 3).
The majority of these groupings corresponded to recog-
nised subspecies and/or populations separated by large
geographic distances.
Of the 25 groups that were problematic to distinguish

using neighbour-joining trees and/ or distance methods,
species within 13 groups could be correctly identified
using diagnostic characters in CAOS (Table 2). Although
CAOS distinguished the pacific black duck (Anas super-
ciliosa) from the mallard (A. platyrhynchos) based on
two nucleotides at positions 315 (A/G) and 402 (C/T),
two mallard sequences had ambiguous calls at these po-
sitions (R and Y respectively) indicating the occurrence
of heteroplasmy in these individuals. As such, these

Table 1 Summary of species used in this study, including sequences obtained from Genbank (New Zealand endemic species are
also by definition New Zealand native species)

New Zealand species Closest related species Combined

Orders represented 19 17 19

Families represented 51 35 51

Genera represented 124 70 130

Species represented 211 107 318

New Zealand endemic species represented 75 n/a 75

New Zealand native species represented 180 n/a 180

New Zealand introduced species represented 31 n/a 31

New Zealand species not included in study 14 n/a 14

Species with 1 sequence 20 14 34

Species with 2–4 sequences 53 44 97

Species with 5+ sequences 138 49 187

Sequences generated in this study 928 n/a 928

Sequences obtained from Genbank 488 404 892

Total sequences 1416 404 1820
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characters were not truly diagnostic and the species were
considered to be indistinguishable. In total 169 out of
191 species with > 1 specimen (88.5%) could be success-
fully identified from their COI barcodes. Fifteen species
had COI sequences that were difficult or impossible to
distinguish from their respective closest relatives which
do not occur in New Zealand highlighting the import-
ance of thorough within genera sampling (Table 2).

Discussion
DNA barcoding using the COI region has proven to be an
effective tool for identifying New Zealand birds to species
level, correctly identifying 88.5% of species represented by
multiple specimens. Our success rate is slightly lower than
other avian DNA barcoding studies which have reported
upwards of a 93% success rate [23, 24, 26–29]. This is
likely a reflection of our comprehensive dataset in which
intraspecific variation was determined through the inclu-
sion of conspecific individuals from throughout their
world-wide distribution and through the inclusion of
other closely related species that do not occur in New
Zealand. The average intraspecific distance of 0.32% was
slightly larger than the values reported for the avifauna of
Scandinavia (0.24%), North America (0.23%), Argentina
(0.24%) and the Netherlands (0.29%) [23, 25, 27, 28]
though smaller than for the Japanese (0.46%) [29] and
Turkish (0.62%) [30] avifaunas. This result is also likely a
reflection of intraspecific sampling from a wide geo-
graphic distribution. While these earlier studies have used
Kimura-2-Parameter (K2P) genetic distances, this does
not affect comparisons as the average intraspecific K2P
distance for this study is only 0.01% higher (0.33%) than

the uncorrected p-distance. Nearest neighbour divergence
varied from 0 to 13.27%, similar to the range found in
eastern Palearctic birds by Kerr et al. [24]. Despite our
best efforts, this is likely an inflated estimate due to the
under sampling of some groups.

Evolutionary and systematic applications
Low levels of genetic divergence, particularly at just one
locus, do not invalidate established taxonomy [45]. In
cases of recent divergence, phenotypic differentiation
can occur more rapidly than the complete sorting of
mtDNA [45] while hybridisation and back-crossing can
result in genetic introgression from one species to an-
other [46]. Similar genetic patterns can also result from
misidentification of specimens, although we made all ef-
forts to minimise this issue. In this study, the majority of
the 13 species pairs and triads that could not be distin-
guished by their COI barcodes, represent well-studied,
valid species. For example, the species status of the ex-
tant New Zealand snipes (Coenocorypha spp.) are sup-
ported by reciprocal monophyly in both nuclear and
mitochondrial markers as well as morphometric and
plumage data [47]. Divergence is estimated to have oc-
curred only about 96,000 years ago [47] suggesting in-
complete lineage sorting as the most likely explanation
for COI similarity. This is likely also the case for the
masked gulls (Chroicocephalus scopulinus and C. bulleri)
which diverged about 240,000 years ago [48]. Occasional
hybridisation between these species has also been ob-
served [49] and slow mutation rates have also been im-
plicated [50]. Many gull species within the closely
related genus Larus have indistinguishable COI barcodes

ba

Fig. 1 Distance analysis of COI data. a Comparison of nearest neighbour (minimum interspecific distance) and maximum intraspecific distances of
the COI sequences from each New Zealand species represented by > 1 specimen (n = 191). Equal intra– and inter–specific variation is marked by
the black line. Points above the black line indicate species with ‘local barcode gaps’. b Comparison of maximum intraspecific distance and
sampling effort (number of specimens) for each species. There is no observable sampling bias in levels of intraspecific variation. In both
scatterplots, green points represent species with a local barcode gap, while red points represent those with no barcode gap
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e.g. [24, 27–29] which is attributed to recent speciation
and hybridisation. The brown and south polar skua
(Stercorarius antarcticus and S. maccormicki respect-
ively) diverged only about 200,000 years ago and speci-
ation is considered incomplete with hybridisation
common [51, 52]. Originally considered a single species,
the northern and southern giant petrels (Macronectes
halli and M. giganteus) were split on the basis of mor-
phological and behavioural differences [53]. This tax-
onomy is supported by nuclear and mitochondrial
markers though genetic divergence levels are low [54], a
reflection of recent divergence (about 200,000 years ago
[54]) and hybridisation [55]. The low divergence be-
tween parakeets (Cyanoramphus spp.) is also likely a re-
flection of recent speciation [56]. Mitochondrial control
region sequences were used to measure the divergence
of the Antipodes parakeet (C. unicolor) which was esti-
mated to have occurred ~ 270,000 years ago [56]. The
sympatric Reischek’s parakeet (C. hochstetteri) colonised
the Antipodes Islands much more recently, diverging
from the red-crowned parakeet (C. novaezelandiae) ~
100,000 years ago [56]. This is consistent with our find-
ing that the Antipodes parakeet could be distinguished
from the other two species by two diagnostic nucleo-
tides. The introduced mallard and native pacific black
duck are known to hybridise extensively with mtDNA
introgression being bidirectional [57]. In two mallards,
there was evidence of heteroplasmy at two nucleotide
sites. Mitochondrial heteroplasmy, the occurrence of
more than one haplotype within an individual, can occur
as a result of mutation, recombination or paternal leak-
age [58]. The general assumption that mtDNA is unipa-
rentally inherited and homoplasmic is being questioned
by the accumulating evidence of paternal leakage in a
variety of taxa (reviewed in Barr et al., [59]).
For other species that could not be identified by their

COI barcodes, in-depth studies are lacking and further
investigation is required. For example, the royal penguin
(Eudyptes schlegeli) and macaroni penguin (E. chrysolo-
phus) are considered conspecific by some [60, 61] and
the mitochondrial hypervariable control region and the
COI barcoding region show very low levels of divergence
[62, 63]. Here we show that the COI sequences of speci-
mens from royal and macaroni penguins generated by
Baker et al. [63] could not be distinguished by CAOS.
Taxonomic uncertainty also surrounds the New Zealand
oystercatchers. A preliminary genetic study using
mtDNA found no differences between the mainland spe-
cies the South Island pied oystercatcher (Haematopus
finschi) and the variable oystercatcher (H. unicolor) [64]
which occasionally hybridise [65], but vary substantially
in morphology. However, the Chatham Island species
(H. chathamensis), which is considered by some to be a
subspecies of the variable oystercatcher [66], was found

to be distinct from the mainland species [64]. While
none of the three species could be distinguished by COI
barcodes, the Chatham Island oystercatcher showed the
highest genetic divergence. Consistent plumage differ-
ences are currently the only basis for the separation of
the Australasian bittern (Botaurus poiciloptilus) and the
great bittern (B. stellaris) [61]. Our results suggest lim-
ited genetic divergence at the COI locus between the
two species (mean distance of 0.12%) indicating their
taxonomy may require further investigation.
Since we only have one Chatham Island pigeon (Hemi-

phaga chathamensis) specimen we can conclude little
from the similarity between it and its sister taxa the
New Zealand pigeon (H. novaeseelandiae). The Chatham
Island pigeon was only recently elevated to species status
on the basis of morphometric differences [67]. In a lar-
ger study, Goldberg et al. [68] found no differences in
the COI region, and low divergence in cytochrome b and
D-loop sequences (1.2 and 2.8% respectively) which was
attributed to recent widespread dispersal. In the present
study, the fulmar prion (Pachyptila crassirostris) was rep-
resented by a single sequence which showed low diver-
gence when compared to the fairy prion (P. turtur). These
species are sometimes considered conspecific [69].
Divergent COI lineages were evident within 16 species

(Table 3). There is no level of genetic distance that can
be used as a cut-off for species status, as speciation re-
sults in genetic divergence but is not caused by it [70].
However, divergence in COI barcodes can identify taxa
in which further scrutiny may be required [24]. In seven
globally distributed species, divergent lineages corre-
sponded to recognised subspecies separated by large
geographic distances; gentoo penguin (Pygoscelis papua),
Wilson’s storm petrel (Oceanites oceanicus), great egret
(Ardea alba), common pheasant (Phasianus colchicus),
whimbrel (Numenius phaeopus), little owl (Athene noc-
tua) and Eurasian skylark (Alauda arvensis). Within five
of the six species that showed divergent lineages be-
tween New Zealand and Australia there are recognised
subspecies; spur-winged plover (Vanellus miles), more-
pork (Ninox novaeseelandiae), little penguin (Eudyptula
minor), New Zealand pipit (Anthus novaeseelandiae) and
white-faced storm petrel (Pelagodroma marina). How-
ever, detailed geographic sampling would be required for
each species to determine if COI barcodes could distin-
guish subspecies. Furthermore, it has been suggested
that some of these currently recognised subspecies war-
rant separate species status. For example, there is evi-
dence in the form of nuclear and mitochondrial markers
[70, 71], behavioural [72] and plumage differences [71]
that the New Zealand and Australian populations of lit-
tle penguins (E. minor) should be recognised as separate
species. Additionally, a recent study of the genus Ninox
recommended that the mainland Australian population
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be treated as a separate species from Tasmanian and
New Zealand populations [73].
The taxonomy of diving petrels remains unresolved

and is the subject of debate [74, 75]. Within New Zea-
land, there was evidence of divergent lineages corre-
sponding to recognised subspecies within four species.
Populations of both little shearwater (Puffinus assimilis)
and white-faced storm petrel (Pelagodroma marina)
were divergent between the Mokohinau and Kermadec
Islands. The white-faced storm petrels collected from
the Mokohinau Islands and a beach wrecked individual
found in the North Island (presumably from the Moko-
hinau Islands population) were over 5% divergent from
the specimens collected in Australia and the Kermadec
Islands. The Kermadec Island population is regarded as
a distinct species (P. albiclunis) by Birds New Zealand
[76]. Though we cannot be certain of which breeding
population the Australian sample originated from, given
its collection location it was probably a member of the
Australian subspecies P. m. dulciae. Genetic compari-
sons of these populations are lacking, however, Silva et
al. [77] found that the Mokohinau Island population was
highly differentiated from North and South Atlantic
populations using mitochondrial and nuclear markers.
Rifleman (Acanthisitta chloris) and New Zealand robin
(Petroica australis) showed divergent lineages between the
North and South Islands. New Zealand robin lineages
showed a divergence of 4.12%, similar to control region
sequences which showed 5.9% divergence suggesting
long-term isolation [78]. Indeed, Birds New Zealand rec-
ognises the North Island robin as a separate species P.
longipes [76].
There was no clear pattern in the success rates of

DNA barcoding despite the unique composition of the
New Zealand avifauna. High levels of endemism had no
obvious effect on success rates. For New Zealand species
represented by > 1 specimen, 85.5% of endemic, 88.75%
of native and 87.1% of introduced species could be iden-
tified by DNA barcodes. Divergent lineages were evident
in a similar proportion of native and introduced species
(6.9 and 9.7% respectively). The high prevalence of sea-
birds did not appear to influence success rates with
90.4% of seabirds successfully identified compared to
88% of land birds and 7.2% of seabirds showing evidence
of divergent lineages compared to 9.2% of land birds.
Importantly, this demonstrates that DNA barcoding can
be successfully applied to species discrimination in fauna
with a wide range of evolutionary patterns and life his-
tory traits.

Conservation management applications
The 928 COI sequences from 180 New Zealand bird species
generated from this study form a substantial reference data-
base that will be a valuable tool for specimen identification

and the conservation of New Zealand birds. DNA barcoding
has many advantages over morphological identification
when applied to conservation management [14]. DNA bar-
coding can utilise non-invasive samples such as feathers or
faeces [11] which is beneficial when dealing with rare and
endangered birds or elusive predators [79]. Invasive mam-
malian predators are the biggest threat to the survival of
New Zealand birds, responsible for the majority of the 26.6
million chick and egg losses of native bird species each year
[80]. Diet studies using DNA barcodes can be used to assess
predator impact on prey populations and provide superior
detection and identification of prey species when compared
to morphological analysis [14].

Performance of different methods of analysis
CAOS was found to be the most successful method for
identifying specimens to the species level. All species that
were distinguishable using neighbour-joining tree or other
distance-based methods were also successfully identified by
CAOS and an additional 14 species could only be identi-
fied using CAOS. While previously the application of
CAOS has been limited by scalability issues [24], this has
now been overcome and large datasets such as ours can be
successfully analysed. We found that there were no differ-
ences in output when CAOS was run using smaller data-
sets consisting of species from one order. When sequences
from species not found in our database were queried,
CAOS correctly identified these individuals to the genus
level. While this issue highlights the importance of thor-
ough sampling in the reference database, genus level iden-
tification is more useful than no identification at all.
It is well-established that phylogenetic trees may perform

poorly for the purpose of specimen identification [81, 82].
It is not possible to determine if a query sequence belongs
to the species which it is topologically closest to unless it is
nested within a monophyletic cluster [83]. Additionally,
when either speciation is recent and individual genes are
still incompletely sorted, or when introgressive hy-
bridisation is occurring, non-monophyly is to be ex-
pected [84, 85]. Despite these limitations, quantifying
the level of monophyly is still a useful descriptor of the data
[4]. In this study, non-monophyly was observed in 14.7% of
species, that is similar to values reported in other studies of
Aves, between 10.4% [86] and 16.7% [46]. While distance
and phylogenetic tree-based methods do not have the same
level of success as CAOS, they reveal interesting features of
the data which character-based methods do not. For ex-
ample, evidence of divergent lineages can be quickly ob-
served in a phylogenetic tree while large intraspecific
variation may also indicate divergence. For species that
show small interspecific distances and/or non-monophyly,
we should be more cautious about identifications provided
by CAOS as discussed above.
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Conclusions
This study demonstrates that DNA barcoding can iden-
tify the majority of New Zealand birds to the species
level. DNA barcoding has proved effective in ‘the Sea-
bird Capital of the world’, a region where the unique avi-
fauna has characteristics of both a continent and an
island and is of mixed evolutionary origin. COI barcodes
have highlighted species groups with limited divergence
and other species that show evidence of divergent line-
ages that require further taxonomic scrutiny. Wide-
spread geographic sampling means that the reported
success rates are more conservative than they would
have been had we only included specimens from the
New Zealand region. The reference database generated
by this study will provide a powerful tool for the conser-
vation management of New Zealand birds.

Methods
Sampling
We generated COI sequences from 928 specimens
representing 180 species from the New Zealand region
(Fig. 2a and b). Samples included voucher specimens
from the Auckland War Memorial Museum, Museum
Victoria, Museum of Natural Sciences at Louisiana State
University and the Royal Ontario Museum. Other speci-
mens were collected in the field by a large number of
people over the last 35 years. Where possible, individual
birds were sampled from across the species’ geographic

range in order to determine levels of geographic vari-
ation. Additional Genbank sequences were also included
in the analysis (see Additional file 4). Taxonomy was
based upon Clements [87], including corrections and
updates up to 7 March 2017.

DNA sequencing
For the majority of samples, the DNA extraction proto-
col, PCR conditions, sequencing methodology and pri-
mer details were as previously described by Patel et al.
[88]. For the remaining samples the methodology is out-
lined in Tavares and Baker [89]. Sequences shorter than
519 bp or which contained ten or more ambiguous base
calls were excluded from analysis. Specimen information,
sequences and trace files can be accessed on the Barcode
of Life Data Systems website (BOLD, GenBank accession
numbers MK261779 - MK262706) [90].

Additional data
The data gathered in this study were supplemented by
892 sequences from GenBank that fell into two categor-
ies. Firstly, 488 sequences from species that occur in the
New Zealand region. For non-endemic species, speci-
mens from across their geographic distribution were
preferentially included, to capture the most geographic
variation. Secondly, in instances where a species’ closest
relative did not occur in New Zealand, sequences from
the most closely related species available were included

 Is

Auckland Islands

Macquarie Is.

Three Kings Is.

Antipodes Is.

Snares Is.
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50°

45°

40°
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Fig. 2 Map of New Zealand region as defined by this study including (a) New Zealand and its outlying islands and (b) the Ross Dependency, Antarctica
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to increase within genera sampling. These additional 404
sequences are referred to as related species and while
they were included in all analyses, only the success rates
and divergence levels of New Zealand species are re-
ported. A number of GenBank sequences followed out-
dated taxonomic classifications and were renamed to
follow Clements [87] (see Additional file 4).
In total 1820 sequences were included in the analysis,

of which 1416 were from 211 species that occur in the
New Zealand region. A complete list of GenBank acces-
sion numbers of the sequences used in this study is
available in Additional file 4.

Analysis
Three DNA barcoding analysis methods were used; tree
building, distance analysis and diagnostic character as-
signment. Tree building was conducted in MEGA ver-
sion 7 [91]. Sequence alignment was performed with
MUSCLE [92] and a neighbour-joining tree was pro-
duced based on uncorrected p-distances. P-distances
have been shown to produce higher or similar levels of
correct identification than Kimura-2-Parameter (K2P)
distances which are commonly employed in barcoding
studies [93, 94]. Support for monophyletic clades was
measured using bootstrap values with 1000 replicates.
Patterns of divergence were classified as either mono-
phyletic with either greater than or less than 95% boot-
strap support, paraphyletic or polyphyletic.
Local barcode gap analysis was conducted by calculat-

ing maximum intraspecific and minimum interspecific
(nearest neighbour) genetic distances for each species
using the Spider package [95] for RStudio [96]. For each
species, these values were plotted against each other to
visualise ‘local’ barcoding gaps; discontinuity between
levels of intraspecific and interspecific distances [4].
Nearest neighbour distances were used in preference to
average interspecific distances because species identifica-
tion is ultimately dependent upon how different a se-
quence is from its closest allospecific sequence, as
opposed to the distance to the “average” sequence [97].
An optimised global distance threshold was also calcu-
lated from the data, minimising the cumulative error
rate [8].
Character-based identification was implemented in

CAOS [42–44]. CAOS identifies diagnostic characters,
termed ‘character attributes’ (CA’s) from a tree of
pre-defined species. Single CA’s may be either pure
(sPu’s) if they are shared by all members of a clade and
are absent from the other clades or private (sPr’s) if they
are shared only by some members of a clade [7]. De-
tailed methodology can be found in the Additional file 5.
In brief, CAOS barcoding is comprised of three steps,
each performed by a separate program. Firstly, the
CAOS-Analyzer extracts CA’s from the input nexus file

that consists of the sequence alignment and tree file fused
together. Next, the outputs of the CAOS-Analyzer are
converted into an easily interpretable character-based bar-
code matrix using the CAOS-Barcoder. Finally, the
CAOS-Classifier tests the efficacy of this matrix by
attempting to assign a new query specimen to the correct
species in the reference dataset. For species with multiple
representatives, the shortest sequence was excluded from
the reference database and used as a query sequence.

Additional files

Additional file 1: Frequency distribution of maximum intraspecific and
minimum interspecific genetic distances measured using a standardised
648 bp region of the cytochrome c oxidase gene for all New Zealand
bird species with > 1 specimen obtained during the study. The dashed
line indicates the calculated optimised distance threshold (0.025%).
(DOCX 96 kb)

Additional file 2: Cumulative error plot of type I (false positive) and
type II (false negative) errors for different divergence thresholds of
maximum intraspecific and minimum interspecific genetic distances
measured using a standardised 648 bp region of the cytochrome c
oxidase gene for all New Zealand bird species with > 1 specimen
obtained during the study. The optimal threshold occurs at 0.25%.
(DOCX 171 kb)

Additional file 3: Neighbour Joining tree of sequences of a
standardised 648 bp region of the cytochrome c oxidase gene obtained
from New Zealand and closely related bird species in this study.
Bootstrap support values ≥0.5 are indicated. Monophyletic clades have
been collapsed. Branches are coloured by Order. (PDF 6097 kb)

Additional file 4: List of all sequences of a standardised 648 bp region
of the cytochrome c oxidase gene obtained from New Zealand and
closely related bird species used in this study including Genbank
accession numbers. (DOCX 63 kb)

Additional file 5: Detailed methodology of CAOS analysis. (DOCX 29 kb)

Abbreviations
CAOS: Characteristic Attribute Organization System; COI: Cytochrome c
oxidase subunit I; mtDNA: mitochondrial DNA
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