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Abstract
There is much interest in using high-throughput DNA sequencing methodology to monitor microorganisms, com-
plex plant and animal communities. However, there are experimental and analytical issues to consider before apply-
ing a sequencing technology, which was originally developed for genome projects, to ecological projects. Many of
these issues have been highlighted by recent microbial studies. Understanding how high-throughput sequencing is
best implemented is important for the interpretation of recent results and the success of future applications.
Addressing complex biological questions with metagenomics requires the interaction of researchers who bring dif-
ferent skill sets to problem solving. Educators can help by nurturing a collaborative interdisciplinary approach to
genome science, which is essential for effective problem solving. Educators are in a position to help students, tea-
chers, the public and policy makers interpret the new knowledge that metagenomics brings. To do this, they need
to understand, not only the excitement of the science but also the pitfalls and shortcomings of methodology and re-
search designs. We review these issues and some of the research directions that are helping to move the field
forward.
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INTRODUCTION
The application of high-throughput sequencing

protocols in metagenomics [1] offers the hope of a

cost-effective and comprehensive means of assessing

biotic diversity and ecological relationships for many

complex animal, plant and microbial ecosystems.

These protocols have the potential to advance

understanding of human health [2], ecosystem

health [3], food safety and security [4]; identify

novel energy sources and drugs [5, 6]; facilitate

large-scale monitoring of mammalian and

endangered biodiversity [7]; uncover the nature of

symbiotic [8] and endosymbiotic [9] relationships;

determine the specificity of insects acting as biolo-

gical control agents [10, 11]; and investigate the tem-

poral and spatial trophic interactions of invertebrates,

microbes and plants in farmed [12, 13] and natural

[14] ecosystems—including evaluation of adaptive

responses to environmental change [15, 16]. These

examples illustrate some of the many questions that

can now be addressed with high-throughput sequen-

cing and metagenomics. That said, application of the
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technology is not without its challenges. Educators

need to be aware, not only of the potential for

advancing scientific discovery but also of the meth-

odological issues confronting researchers and the

practical solutions being pursued.

Experimental and sampling issues
Southwood’s classic 1966 text ‘Ecological Methods’

discusses the crucial importance of sampling strategies

in ecological studies. The need for preliminary sam-

pling, consideration of the number of samples

needed and the importance of spatial and temporal

aspects when designing such studies are all included.

The principle of ‘garbage in, garbage out’ is as true

today as it was when the most sophisticated tool that

a biologist had was a quadrat; yet, there is undoubt-

edly a risk that researchers using high-throughput

sequencing get caught in the headlights of new tech-

nology and fail to follow these fundamental and es-

tablished principles of good experimental design

[17, 18]. Cost effective yet properly replicated

robust sampling is essential for any ecological or

environmental study [19]. Although early shotgun-

sequencing projects were understandably unrepli-

cated or at best poorly replicated, the reduction in

costs in high-throughput sequencing provides a new

opportunity for studies to be undertaken that are

robustly designed—and will ultimately reveal far

more about ecological communities than work con-

ducted before the genomic revolution [5].

Both the detection of species and their abundance

may be achieved by extraction and sequencing of

DNA [20], but a key question before interpreting

data is whether the information gained is represen-

tative of the environment from which the sample

was taken. To address this fundamental issue, studies

should consider the following:

� sufficient replication [19];

� temporal and spatial heterogeneity, with the ac-

ceptance that heterogeneity in time and space

within a sampled environment can significantly

affect detection of species and estimates of relative

abundance [21–24];

� the use of traditional accumulation curve

techniques and associated rarefaction methods,

recognizing that the primary goal of many bio-

diversity-related studies is to estimate either rich-

ness or diversity [25–30];

� sampling strategies should result in community

and sample representativeness when estimating

richness or diversity patterns [31] at the appropri-

ate level of a, b or g-diversity [32] for a given

study;

� use of increasingly sophisticated computational

approaches to optimally design sampling strategies,

particularly in relation to the desired precision of

an estimate and its confidence interval [1, 33–37];

� sequencing methodology is not without error, and

this can lead to a false perception of diversity [38].

Sources of bias and error in the application of

high-throughput sequencing techniques in metage-

nomics are described later in the text. Most observa-

tions have to date been made in studies involving

microbial profiling. The findings are relevant to stu-

dies of other biological systems.

Inefficient DNA extractionwill mislead
community analyses
DNA extraction protocols that work more efficiently

on some organisms than others have been shown to

introduce a bias into estimates of microbial commu-

nity diversity and structure. This has resulted in some

species being over-represented and others being

under-represented or absent [21, 39–45]. Although

extraction can appear to yield DNA of good quality

and quantity, where a protocol fails to extract the

DNA from all organisms that are present, lower

than anticipated diversity can be expected [40, 46].

This can result from inefficient cell lysis (cell wall or

membrane differences) and or because other physio-

logical and chemical properties of the organisms or

their natural environment cause the DNA to be lost

before, or during the extraction procedure (e.g. os-

motic shock in low salt extraction buffers can cause

loss of DNA during extraction protocols with salt

tolerant species [47], DNA can adhere to mucus,

extracellular matrix and/or soil particles [21, 44],

DNA with low GC content can also degrade [47]).

Recently, the efficiency of DNA extraction meth-

ods has been investigated using mock communities

(invitro studies). Cultures of different (known) species

and relative concentrations are combined for library

construction and sequencing. The recovery and

abundance of sequences has been compared with

the known composition of the sample. Notably, sig-

nificant variation in community structure and in the

abundance of species has been observed between

different extraction methods and from what was ex-

pected given the starting material [47–49]. The study

of mock communities has an important place in the
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future of metagenomics, as they provide a means of

investigating the relationship between biomass and

numbers of sequence reads.

The purpose for the study has determined how

researchers have been addressing these pitfalls; studies

that make a ‘snap shot’ through time or geographical

space might use a single method of extraction and

live with the limitations of that method. Studies that

aim to sample the full diversity of an ecological com-

munity suggest using several different DNA extrac-

tion methods [21, 43].

A low yield of DNA has been a problem for high-

throughput sequencing protocols—pyrosequencing

and some Illumina protocols require microgram

amounts for DNA library construction. Low

amounts of starting material can be a problem for

detecting low abundance sequences [50, 1 and see

references within]. In contrast, the Illumina

NEXTERA library preparation method requires

only 1 ng of DNA template. This approach involves

transposon-mediated enzymatic shearing and is po-

tentially susceptible to non-random coverage and

contaminants in poor quality DNA preparations,

which can reduce its efficiency (unpublished obser-

vations). Whole-genome amplification is an alterna-

tive for obtaining larger amounts of DNA starting

template. However, it introduces its own biases

and sources of error [1 and references within 21].

Random shotgun or amplicon
sequencing?
High-throughput sequencing protocols for microbial

profiling have involved either (i) polymerase chain

reaction (PCR) amplification and sequencing of tar-

geted gene loci (amplicon sequencing) and/or (ii) the

sequencing of random genome fragments. Amplicon

sequencing has most often been conducted for 16S

rRNA sequences, as phylogenetic coverage in data-

bases is greater for this molecule than any other mol-

ecule. Although amplicon sequencing is cost

effective, PCR and sequencing of amplicons has a

number of technical challenges that introduce biases

into estimates of biological diversity. These issues are

highlighted later in the text.

Random sequencing protocols involve fragment-

ing genomic DNA and then sequencing these frag-

ments. This approach has been used less for microbial

profiling than has 16S rDNA amplicon profiling.

However, this situation might change with the ap-

pearance of platforms such as Illumina’s MiSEQ [51]

and Life Technology’s Ion Torrent [52], as greater

sequencing depth can be obtained at relatively low

cost. There is an issue with the numbers of sequences

required (sequencing effort) in a metagenomic data

set, to ensure the recovery of low abundance mem-

bers [53, 54]. Observed diversity increases as the total

number of sequences increases. Hence, it is import-

ant to normalize the number of sequences analysed

across different samples [53] and/or use statistical

analysis methods that account for data sets with

vastly different numbers of reads [54]. Simulations

have shown that sequencing coverage impacts sig-

nificantly on estimates of diversity, and phylogenetic

methods of assessment become more important at

low levels of sequence coverage [53].

Methods for random genome sequencing and tar-

geting specific gene loci are not necessarily inde-

pendent. From random shotgun sequences, rDNA

sequences, for example, can be retrieved from the

library of fragments and analysed separately

[54–56]. As discussed under the section on

‘Analytical Issues’, there are specific computational

issues relevant to different data types. Here, we first

describe the nature of experimental biases that are

important to consider for subsequent analyses.

Amplicon sequencing biases
There are a number of recognised properties of PCR

that can mislead biodiversity estimates. These include

polymerase error (which is estimated at 1 substitution

per 105–106 bases [48]), the formation of chimeric/

heteroduplex molecules [48, 57–59] and differential

amplification efficiency [48, 50, 60–62].

Recommendations for laboratory practices that

reduce these biases have been made [60 and refer-

ences therein]. These include lowering PCR cycle

numbers [59], the pooling of multiple reactions, high

(>4 ng) template concentrations and the use of a

proof-reading polymerase ([60], but also see [63]).

Some studies have investigated the effect of primer

mismatch on amplification efficiency using simulated

communities, and most concur that this is a major

factor leading to errors in detection of taxa and the

distortion of taxon frequencies within a community

[48, 60, 61]. In a complex mixture of templates, se-

quences that do not have 100% match with the

primer sequences can amplify at low efficiency or

not at all [48, 60, 61], whereas perfectly matched

sequences will be preferentially amplified and

over-represented. Some studies recommend using

degenerate primers or a mixture of non-degenerate
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primers, to overcome the problems of primer mis-

match and amplification efficiencies [48, 50, 60, 62].

Mao et al. [62] have investigated the coverage rates

of eight commonly used universal 16S rRNA pri-

mers, against the Ribosomal Database Project and

against seven metagenomic data sets. They found

that although some primers were genuinely universal

(e.g. 1390R, 1492R) and showed high coverage

over a wide selection of taxa, some (e.g. 27F)

could be improved by the addition of degenerate

bases, and others (e.g. 519F) missed particular phyla

altogether. Hong et al. [43] estimate that in some

cases, as much as 50% of microbial diversity can be

absent when a single set of primers is used to amplify

template DNA.

The choice of amplicon(s) is important; the most

variable region of the 16S rRNA molecule appears

to be the V1–2 region [50], but there are nine vari-

able regions in total in the gene. The observed di-

versity within the sample can vary depending on

which regions are chosen [48–50, 62, 64], and the

choice of region can determine what stringencies of

quality-score refinement should be used for data ana-

lysis [37, 56]. Amplicon length has been shown to

affect the assessment of the number and relative

abundances of species from communities from the

termite hind gut [50] and from hydrothermal vent

fluids [65]; in both studies, it was found that libraries

constructed from smaller amplicons (<400 and

100 bp, respectively) contained greater species diver-

sity with species of low abundance and more diver-

gence being represented. Longer amplicons were

disproportionately lost in downstream bioinformatics

owing to errors, and the libraries contained more

artefacts such as chimeras, heteroduplexes and mis-

primed sequences.

A high annealing temperature in the PCR reac-

tion can exacerbate biases caused by differences in

primer homology, and the greatest diversity is seen

when low (47–52�C) annealing temperatures are

used [60, 61]. The effect of varying the number of

cycles in the PCR reaction has been investigated;

Sipos et al. [61] found little difference, but others

[59, 60] recommend using the minimum number

of cycles (between 12 and 30) necessary to provide

sufficient template for the next step in the sequen-

cing protocol. This number varies between samples

and should be determined experimentally. Ahn et al.
[63] found the proportion of chimeric sequences

could be reduced significantly by reducing the

number of PCR cycles from 30 to 15 (32–1%,

respectively), and that the numbers of chimeric se-

quences were higher when a high fidelity Taq was

used for PCR. There is risk of chimera formation

when partially formed PCR products act as primers

to amplify homologous and/or similar sequences.

The rate of chimera formation has been suggested

as being from 5 to 45% [48, 57], which underscores

its importance for consideration.

We reiterate here, the point noted by Schloss et al.
[48], that the various platforms of high-throughput

sequencing have been developed primarily for

genome sequencing. Accuracy is not so much of

an issue, given the high coverage afforded by the

assembly of multiple reads. Error rates for an

assembled genome are low due to coverage, al-

though error rates for an individual sequence might

be high.

The error rate of 0.01–0.02 errors/per total base

call for Roche-454 sequencing is considered to be

high [57]. PCR and sequencing errors can create

singleton Operational taxonomic Units (OTUs)

and lead to an overestimation of species richness in

a sample. This can be overcome by using stringent

post-sequencing quality filtering—for example, by

excluding singleton OTUs and sequences that

cannot be taxonomically classified from the analysis

[48, 49, 58, 59].

PCR primers for the 16S rRNA V3 region have

been shown also to be non-specific, amplifying 18S

rRNA sequences, which have been wrongly anno-

tated in GenBank as 16S rRNA gene sequences [66].

Variation in 16S rRNA copy number is a further

source of error, as estimates of relative abundance of

16S rRNA sequence types can be affected by both

copy number variation and organism abundance. In

the novel study by Kembel et al. [67], copy number

was normalized by using phylogenetic assignment of

16S rRNA sequences, and ancestral state reconstruc-

tion was used to infer copy number in unknown

environmental samples. In analyses of 16S rRNA

data from two previous environmental studies, they

showed that differences in 16S rDNA copy number

could sometimes lead to underestimation of the most

abundant taxa and an overestimation of rare taxa.

ANALYTICAL ISSUES
Improving quality of the data
The past 12–24 months has seen the publication of

many articles reporting the nature and significance of

Roche 454 sequencing errors for metagenomic
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studies. Others acknowledge the likelihood and

impact of errors with other technologies including

Illumina sequencing and also more recently for the

Ion Torrent. However, few direct comparisons have

been reported [68].

High-throughput sequencing, and pyrosequen-

cing in particular, is well known to be susceptible

to sequencing errors that can falsely elevate estimates

of species diversity by an order of magnitude [56].

Approaches to reduce this impact of intrinsic error

include quality score analyses and modifications to

alignment and/or clustering methods [56]. Quality

score analysis involves removal of low quality se-

quences from the data set, or parts of sequences, de-

pending on the algorithm used, and the kinds of

downstream analyses to be performed. It is also im-

portant to remember the different error profiles gen-

erated by Illumina sequencing by synthesis

approaches, in comparison with those generated by

pyrosequencing technologies. Consequently, there is

an algorithmic difference in the way these quality

scores are processed, in that quality trimming and/

or processing tools are platform-specific.

High levels of technical replicate variation have

been reported in 16S rRNA amplicon sequencing

[57, 69]—intra and inter-sequencing centre variation

can be significant—variation in thermocycler calibra-

tion, reagent concentration and sampling artefacts

are reported explanations for technical variation

[48, 57, 69]. Such errors could significantly alter es-

timates of b diversity [69].

A number of analytical approaches and pipelines

have been developed to reduce sequencing error

rates with 454 and Illumina sequencing [57]. These

include (i) removal of reads with ambiguous base

calls; (ii) trimming sequences with low quality

scores; and (iii) for 454 data application of (a) com-

putationally intensive denoising algorithms (such as

PyroNoise and DeNoiser, which correct base calls by

modelling the original flow diagram [57]) and (b) less

computationally intensive algorithms (single linkage

clustering and SeqNoise). There are also heuristics

that fit observed number of OTUs to expected

number of OTUs—these are used to reduce the

number of spurious OTUs and phylotypes. The

study of Schloss et al. [48] implemented a quality fil-

tering pipeline to better understand the effect of dif-

ferent sources of error on microbiome interpretation.

Their study provides insight into the sources of error

that can confound environmental community

analyses.

In general, pipelines for analyses in metagenomics

require validation before comparative analyses are

undertaken. Figure 1 illustrates this point for

Illumina data collected for a terrestrial freshwater

sample. The difference in estimates of relative abun-

dance of different bacterial groups is the result of

using different orders of operation (read overlapping

and quality trimming) in pipeline processing. The

cause of this difference is currently undetermined,

but it provides a further point of caution emphasizing

the importance of standardization of protocols that

are to be applied in comparative studies of environ-

mental monitoring [37]. In other words, the exact

description of the bioinformatics processing is as im-

portant as the processing of the sample in the labora-

tory after its collection.

Taxonomic classification
Taxonomic classification is often the first step in a

metagenome project. After receiving millions of

short reads from a high-throughput sequencing plat-

form, the first question to answer, after taking steps

to ensure data quality is ‘What are they?’. Accurate

and robust prediction of the source organism for

each short read is essential for identification and enu-

meration of the organisms in a given sample. Such

knowledge provides a ‘roadmap’ and foundation for

ecological and environmental studies.

-There are three major approaches being used for

taxonomic assignment: phylogenetic-tree-based

methods, similarity search methods and compos-

ition-based methods (Table 1). Development of soft-

ware tools to implement these approaches has been

an active research area. Here, we only list some of

the most popular tools (Table 1). Discussion of these

tools here is space restricted.

Phylogenetic methods are based on reconstruction

of evolutionary models for targeted molecular mar-

kers. 16S rRNA genes have been most commonly

used for microbial studies, and this is strongly re-

flected in experimental studies published to date.

Although useful because of the extent of phylogen-

etic representation in databases, in some instances,

this molecule has been found to exhibit insufficient

phylogenetic resolution for species identifications

(e.g. as with some species of Vibrio [92]). The mito-

chondrial cytochrome c oxidase subunit I (COI)

gene is a popular candidate marker for animals

[93], whereas the chloroplast genes for the large sub-

unit of ribulose-bisphosphate carboxylase (rbcL) and

and a group II intron splicing factor (matK) [94, 95]
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have been accepted for use in plants. Recognition

of the potential significance of hybridization in

animal and plant evolution [15] has also meant that

nuclear markers have been considered [93, 96, 97].

There is no universal sequence found across viral

genomes [98], and perhaps for this reason, phylo-

genetic methods have not been widely applied in

viral metagenomic studies. In addition, sequencing

design can limit application of phylogenetic meth-

ods. For example, although phylogenetic methods

can be applied to shotgun metagenome approaches,

if the genome coverage is insufficient, gene markers

might constitute only a small percentage of a given

sample, resulting in comparative data not being

available.

Similarity search methods include comparison-

based, homology or alignment-based methods.

Basic Local Alignment Search Tools (BLAST) [99]

and profile Hidden Markov Models (pHMM) [100]

are two algorithms that have been successfully

implemented for helping to identify homologies.

They compare metagenome sequences to reference

Figure 1: An example of the effect of the ordering of bioinformatics processing on16S rRNA PCR products gener-
ated using an Illumina MiSeq with 150bp reads. Approximately 700 000 reads were pre-processed using either the
FLASH overlap aligner [70] or DynamicTrim (v. 2.0; part of the SolexaQA suite of Perl scripts [71]) first, and then
processed with the other tool as a second round of processing. Quality trimming was performed with
DynamicTrim at three quality levels (0.05, ‘50thou’; 0.01, ‘10thou’; 0.003, ‘3thou’) to see whether this had an effect. In
all, 200 000 reads of 253bp were then taken and run through the QIIME pipeline (v. 1.5.0; default parameters [72])
in comparison with 200 000 unprocessed sequences (‘raw’). The figure shows a distribution at the taxonomic level
of order, with bacterial orders indicated where they were present at over 0.5%. It can be seen that the distributions
obtained when FLASH was used first similar to the ‘raw’ data set and is different to that obtained when
DynamicTrim was used first. The absence of Rhodospirillales in the FLASH first data sets is particularly noticeable
in this example.
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databases. Although BLAST is commonly used and

effective at identifying homologies, there are com-

putational issues to consider, and these have been

outlined in the section later in the text. Once a

BLAST search is completed, a key task is interpreting

the BLAST output. Early programs like MG-RAST

[55] assume that only the best hits with low e-values

are to be trusted, and less significant hits are dis-

carded. Such an approach lacks sensitivity, and the

results need to be interpreted carefully. An alterna-

tive approach is the Lowest common ancestor (LCA)

algorithm implemented in MEtaGenome ANalyzer

(MEGAN) [78, 101, 102]. LCA allows sequences to

be assigned to higher taxonomic levels if the min-

imum assignment of a taxonomic node on the NCBI

tree of life does not meet a threshold of statistical

significance or where there is ambiguity in the as-

signment of query sequences to database sequences.

In the latest version of MEGAN [102], the ‘min

support’ parameter (minimum number of reads

that need to be assigned to a taxon to identify it)

has been increased from 3 to 5. This makes the ap-

proach more conservative, but the parameter needs

to be evaluated in the context of the increasing

length of high-throughput sequencing reads and

the trade-off between sensitivity and accuracy. The

effectiveness of MEGAN is also impacted by database

representation. This potential problem is illustrated

in Figure 2.

If the sequence from which a query sequence ori-

ginates is not in the database, then MEGAN will

generally assign the read to the most closely related

homolog in the database. For example, relatively few

complete genome sequences are available for protists,

thus query sequences matching orthologues in these

organisms are often only distantly related. LCA is a

powerful approach that makes maximum use of

available reference sequences, but its susceptibility

to uneven representation of taxa and missing data

in the reference databases needs to be taken into

account when interpreting results.

An integrated environment approach, provided by

the Python-based software pipeline Quantitative

Insights Into Microbial Ecology (QIIME) [72] has

been devised to analyse 16S rRNA amplicon se-

quences from 454 (and now also Illumina) sequence

data. This publically available software is available as

a pre-packaged virtual machine, ready to perform

analyses once installed. There are advantages in this

approach to software distribution, as the process then

Table 1: Commonly used approaches for taxonomic assignment

Phylogenetic methods Similarity search Composition-based

Underlying
Algorithms and
Methods

Maximum likelihood, Bayesian
Inference, Neighbour-Joining

BLAST Interpolated Markov models
pHMM NBC
LCA k-means/k-nearest-neighbour

Pros Marker gene databases and multiple
alignments are well curated and
maintained.

Some matured pipelines have been
tested and applied. Makes use of
all available reference data and is
therefore themost comprehensive
method for detecting taxa that
have already been described.

Faster than the similarity-based ap-
proach once the model is built.

Cons Not applicable for viruses, as there
are no universal markers.

Similarity search, i.e. BLAST search,
is computational intensive.

Requires rather long sequences as
analysis inputs.

False positive assignments need to
be examined manually. In most
cases, this will not be practical.

Needs to improve accuracyThus, design of primers for more
specific loci is required.

The assignment of reads is limited to
the taxonomic range represented
in the database.

Implemented
Applications

EPA [73] MEGAN [77] INDUS [81]
FastTree [74] Sort-ITEMS [78] NBC [82]
pplacer [75] CARMA3 [79] MetaBin [83]
Greengenes [76] MetaPhyler [80] TACOA [84]

QIIME [72] MetaCluster [85, 86]
PhymmBL [87]

AMPHORA [88], MLTreeMap [89] and SAP [90]
SPHINX [91]
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becomes less dependent on the user being able to set

up a bioinformatics pipeline for their analyses, and

having all the necessary internal dependencies ful-

filled. QIIME performs many analysis steps (read fil-

tering, OTU picking by sequence similarity,

taxonomic assignment, phylogenetic tree generation,

diversity metric calculation and visualization by vari-

ous methods including principal components ana-

lysis), and can be set up to run in a serial or parallel

mode.

Composition-based methods have three steps.

The first step involves computing a model or a pro-

file on a set of known sequences. Interpolated

Markov models [103] are typically developed for a

set of reference sequences for which there is known

taxonomic information. Features like GC content,

codon usage or oligonucleotide frequencies are

common characteristics used for computing such

models. The second step involves characterizing an

unknown set of metagenomic sequences for the

same features that are used to describe the set of

reference sequences. In the third step, a comparison

is made of the reference and metagenome profiles so

that taxonomic ranks can be assigned to the metage-

nomic sequences. The model building can be com-

putationally expensive. However, once the models

are built (step 1), the latter steps are generally faster

than alignment-based methods such as BLAST.

To achieve the best results, sometimes instead of

using only one of the strategies discussed earlier in the

text, combined methods are implemented (Table 1).

For example, SPHINX a hybrid binning approach

combines similarity and composition methods. In

SPHINX, an extended LCA method is implemented

with a k-mer filtering step. Protein encoding se-

quences from microbial genomes are clustered based

on their tetra-nucleotide frequencies with a k-means

clustering approach. For each cluster, a centroid is

computed, and the sequences are translated into pro-

tein sequences. The first step in the taxonomic classi-

fication consists of computing the distance of the

metagenomic fragment to all cluster centroids. The

fragment is then assigned to the cluster whose cen-

troid has the smallest distance. After a BLASTx search

of the metagenomic fragment against the translated

sequences in this cluster, the SOrt-ITEMS algorithm

(extended LCA algorithm) is used for the final classi-

fication. Applications such as the Automated Phylo-

genomic Inference Pipeline for bacterial sequences

(AMPHORA), MLTreeMap and the Statistical

Assignment Package (SAP) have been classified as

similarity search methods in some reviews because

they use alignment algorithms like BLAST or HMM.

However, they also build evolutionary models for

specific gene loci, and as such they might also be con-

sidered as phylogenetic analysis methods. Bazinet and

Cummings [104] have carried out a comparative

evaluation of sequence classification programs. In

practice, scientists need to balance the trade-off be-

tween assignment accuracy and resource requirements

when making a selection on which tool(s) to use.

Computational issues with BLAST
The large number of short sequences obtained from

metagenomic samples has led to an exponential

growth of data in public reference databases such as

the NCBI nt or nr databases, and sequence similarity

searches have become the bottleneck of metage-

nomic data analysis. To complete an analysis in a

timely manner, scientists need to choose a similarity

search tool. Although there are some alternative tools

available, BLAST [99] (BLASTþ) programs still

remain the most widely used tools. BLAST is the

most validated method of matching query and data-

base sequences, and it remains the benchmark tool to

evaluate the completeness and correctness of other

alternatives. Further, although other alternatives offer

Figure 2: Impact of database representation on LCA
assignment to ancestral nodes. Solid lines link homo-
logues identified by BLAST to a query sequence.
Dashed lines link query sequences to homologues that
are not represented in the data base. Circles indicate
the nodes to which LCA assigns the query sequence,
whereas crosses identify the correct placement of the
query sequence within the taxonomic hierarchy.
(A) LCA assigns the query sequence to the node of
the most recent common ancestor of all taxa that pro-
duce significant BLAST hits. Where the source organ-
ism or close relatives of the source organism are
present, LCA provides a good indication of the taxo-
nomic group to which the source organism belongs;
(B) where the source organism and relatives of the
source organism are poorly represented in the data-
base, LCA can give a misleading assignment of the taxo-
nomic group. Our observations are that this problem
of miss-assignment is more significant for taxa whose
genomes have not been fully sequenced.
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greater speeds of execution, appropriate analysis pipe-

lines still need to be integrated into routine environ-

mental biomonitoring. For these reasons, it is

important to outline the computational issues with

BLAST. ‘Which BLAST program do I use?’ and

‘which platform is going to be used to run BLAST?’

are two important questions to be answered. BLASTP

will match proteins searched against a protein database

but will miss incorrectly translated query sequences

and also sequences in poorly annotated reference gen-

omes. BLASTX translates queries into all six reading

frames, and in so doing increases sensitivity. However,

this also increases computation time of the homology

search. Similarly, TBLASTX, which translates both

the query and reference sequences into all reading

frames, is ideal in terms of sensitivity. However, in

practice, it is not feasible to use in metagenomic stu-

dies because of its long run time and because of the

need for high end computing resources. BLASTN is

the least computationally intensive BLAST program

because it compares nucleotide against nucleotide

databases (such as the NCBI nt database). However,

it is less sensitive than BLAST protein searches when

database coverage is poor and less valuable than

BLASTX where gene functional analysis is an import-

ant part of the metagenomic project.

Running parallel BLAST is not a trivial task, al-

though BLAST for multiple queries is an ‘embarrass-

ingly parallel problem’ [105], which requires no or

little effort to separate the problem into a number of

parallel tasks. The local NCBI BLASTþ [106] algo-

rithm is a multithreading version of BLAST, which

could take advantage of modern multi-core desktop

computers. It has three steps: word matching,

ungapped alignment and gapped alignment. Only

the first step has been implemented using multi-

threading; therefore, in practice, NCBI BLASTþ

does not significantly improve the speed of searching

large databases and reduce runtime. In mpiBLAST

[107], a reference database can be fragmented as well

as the input queries. However, an out-of-dated

version of BLAST (NCBI BLAST) is used in

mpiBLAST, and there have been no updates in

the development of mpiBLAST since April

2010 based on the information on the mpiBLAST

website.

In addition to the effort on parallelizing BLAST

software and reference databases, specific hardware is

required to run parallel versions of BLAST.

Accessing a high performance computing (HPC)

facilities poses another barrier to scientists in terms

of cost and usability. In most HPC facilities, the

computing resources are managed by job scheduling

tools, and researchers need to have some under-

standing of an HPC environment to run BLAST

analyses.

Alternatively, graphic processing unit (GPU)

BLAST has been implemented to take advantage

of GPU parallelism using Compute Unified Device

Architecture (CUDA) framework [108, 109].

However, this development is still in the stage of

proof-of-concept and only BLASTP has been

implemented.

Alternative similarity search algorithms
Far less sensitive than BLAST, but faster is the simi-

larity search algorithm of BLAT [110]. The solution

for attaining faster speed in BLAT is to index refer-

ence genomes using non-overlapping k-mers and to

save the index in memory. However, the fast speed

obtained using non-overlapping k-mers also means

that sensitivity is sacrificed. In the context of meta-

genomic analyse, MG-RAST [55] and MetaBin [83]

use BLAT as their homology search tool (Table 1).

Two new BLASTX alternatives: Reduced

Alphabet based Protein similarity Search

(RAPSearch) [111, 112] and Protein Alignment

Using a DNA Aligner (PAUDA) [113] are also im-

portant to mention. A reduced protein alphabet idea

is used in both approaches. In addition, PAUDA uses

BOWTIE2 [114] as its mapping engine.

RAPSearch2 and PAUDA reportedly run up to

100� and 10,000� faster than BLASTX, respect-

ively. Within an environmental biomonitoring set-

ting, e.g. in responding to an infectious disease

outbreak, methods with fast execution times will

be needed for obtaining timely results. A concern

with PAUDA might be loss of sensitivity.

However, the authors report identification of similar

orthology groups at all taxonomic hierarchical levels

in empirical analyses they have undertaken [113],

suggesting that although more reads are likely to be

unassigned with PAUDA, the method is nevertheless

suitable for measuring changes in the relative abun-

dance of species.

In parallel with the development of BLAST-like

search tools, there are other similarity approaches

that include application of the Smith–Waterman

algorithm [115]. For this, research has leveraged

multi-processors in a GPU. The Smith–Waterman

algorithm involves a dynamic programming search

strategy, which explores all possible alignments
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between two sequences and then produces an opti-

mal local alignment. It is computationally unrealistic

to obtain optimal local assignments with traditional

implementations of the Smith–Waterman algorithm,

given the exponential growth of protein and DNA

databases and with the size of metagenomic data sets.

For this reason, researchers have been making use of

CUDA-enabled applications in metagenomic studies

[109, 116–118]. However, GPU implementations

require special hardware and software environments,

and for this reason, they are not yet accessible to

most scientists in the metagenomics field. The imple-

mentation, without or with few modifications, of

accelerated Smith-Waterman search strategies into

existing GPU/CUDA pipelines that currently use

BLAST is a subject of considerable interest.

Although the runtime of GPU Smith–Waterman

has been reduced significantly, there are still no re-

ported performance evaluations for rendering GPU

Smith–Waterman output for taxonomic classifica-

tion. In other words, the downstream analysis has

not yet been evaluated.

In most cases, to run the data analysis process

seamlessly, some programming skills are required to

parse or alter the input or output files such as format,

structure and layout. The amount of time and effort

required to make the pipeline flexible are substantial

and sometimes not achievable under some time and

budget constraints. For this reason, some of the

BLAST-like tools and GPU Smith–Waterman are

still not a favoured option after considering other

factors involved a metagenomic project. This scen-

ario equally applies to other cases where a new bio-

informatics tool is introduced into a metagenomic

analysis pipeline.

DATABASE ISSUES
Schnoes et al. [119] has discussed reference database

errors and their impact on the interpretation of

BLAST results. As aforementioned, we (and others)

have observed a strong presence of model organisms

in MEGAN outputs, which reflects the problem of

taxonomic bias in the database. Further, there is also

evidence of misclassification of entries in the NCBI

GenBank database [e.g. 66]. Such errors are propa-

gated into BLAST outputs, which then results in

incorrect taxonomic assignment. Another database

issue concerns the GI-TID dump file from the

NCBI Taxonomy database. This file (GI-TID) is

used by some applications as a look up file for parsing

sequence search results, i.e. assigning the BLAST

output to the NCBI taxonomy. An assumption for

the dump file is that one GI entry in the NCBI has

one and only one associated taxonomy ID, and one

taxonomy ID can be assigned to multiple GIs. In

reality, for some entries, there are two associated

TIDs. For example, the entry GI 29028372 has

two taxon IDs. Taxon ID 10679 is for a virus and

the other one, 562, is for its host’s taxon ID. Errors

such as this diminish database integrity.

Key points

� High-throughput sequencing overcomes (i) selection biases of
traditional culture-based method in environmental profiling, (ii)
identifyminor but ecological significantmicrobes in the environ-
ment and (iii) make amenable for study other complex biotic
ecosystems.However, there are many points to consider for its
effective implementation.

� The length of high-throughput sequencing reads, the limitation
of reference databases, sequencing errors and taxonomic assign-
ment strategies are some of the possible factors that contribute
to the high percentage of short reads from metagenomic pro-
jects that cannot bematchedwith their target organisms.

� In most current metagenomic projects, unassigned sequences
are omitted fromdata analysis. So far, there are no easy answers
to questions like ‘do these sequences result from errors?’ or
‘have we found something new?’ and ‘how can we confirm our
findings?’

� In vitro-simulated communities play an important role in the in-
vestigation of different sequencing and data analysis techniques.
They provide a valuable experimental approach for testing limi-
tations ofmethodology and for evaluating the potential of meta-
genomics in studies where the relative abundance of organisms
and their biomass is assessed.

� During the past few years, the development of high-throughput
and low-cost sequencing technologies has been faster than the
speed of data analysis.Data storage, transfer and sharing are dif-
ficult problems owing to the large volume of sequencing data.
Computational resources for processing the data are a bottle-
neck inmostmetagenomics projects. Sequence data generation
has increased at a greater rate than Moore’s Law. Alternatives
to BLAST that speedupmetagenomics analyses,whichwill facili-
tate rapid reporting of bio-monitoring results, are active area of
much research interest.

� Multiple bioinformatics tools and applications are used for data
analysis process. Integration of these tools with computational
resources into pipelines is an important direction for research,
requiring collaboration between biologists and computer spe-
cialists. Standardized pipelines will improve data analysis prod-
uctivity and provide a solid foundation for future comparative
metagenomic studies.
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