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ABSTRACT 

A Distributed Denial of Service (DDoS) attack remains one of the most common and 

devastating security threats to the Internet world. The main purpose of an attack is to disable 

the use of services on the Internet or the victim network by sending a large number of IP 

packets to the targeted system. Since no single solution for a DDoS attack has been found, 

these attacks have managed to prevail on the Internet for a decade. Therefore, it is 

necessary and important to evaluate such an attack in a real testbed environment to find the 

most suitable defense mechanism.   

In this thesis, the different types of DDoS attacks are discussed followed by a focus on UDP 

flood attacks. Tests were conducted and new results obtained on the impact of a UDP flood 

attack on computers using the latest versions of Windows and Linux platforms, e.g., 

Windows Server 2012, Windows 8, and Linux Ubuntu 13. This research also produced new 

evaluation results on various defense mechanisms such as Network Load Balancing, 

Software Firewall, Access Control Lists, Threshold Limit, Hybrid Method, and IP Verify. 

Unlike simulation studies, this project lays down the steps involved in implementing the 

attack in a real testbed environment. In this study, the victim network is based on an Intranet 

network environment that provides several services (e.g., a web service and file transfer 

service) to legitimate clients. An attacker in the testbed, on the other hand, will launch the 

attack from outside the local subnet. Several metrics such as round-trip time, user 

throughput, packet loss, and CPU utilization of the victim computer were gathered in order to 

investigate the impact of an attack.  

The findings of this study concluded that Linux Ubuntu 13 withstood UDP flood attacks better 

than Windows Server 2012 while the Hybrid Method and Threshold Limit were the most 

effective defenses against UDP flood attacks for both Windows and Linux platforms. Both 

defenses significantly increased throughputs, and reduced the RTT, packet loss, and CPU 

utilization of a victim computer. On the other hand, the Software Firewall was the least 

effective defense in all studies.  
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CHAPTER 1 

INTRODUCTION 

1.1 Internet Security  

A revolution occurred in the world of computers and communication with the advent of the 

Internet. Nowadays, such a technology has become increasingly important to current 

society; it has changed our way of communication, business modes, and made information 

publicly accessible quickly and easily manner, and within easy reach. Many organizations 

use such technology to provide various services to their customers, for example, online 

banking, shopping online, and video conferencing.  

However, along with the advantages of the Internet, there are also some disadvantages. 

There is no absolute security in the Internet world, and hackers can use the Internet to 

launch many different types of attacks on a targeted network, one of which is known as a 

Distributed Denial of Service attack (DDoS attack).   

A DDoS attack is one of the most common and major threats to the Internet in which the 

goal of the attacker is to consume resources of the victim, usually by sending a high volume 

of seemingly legitimate traffic requesting services from the victim. As a result, it creates  

network congestion on the targeted computer, thus disrupting its normal Internet operation 

(Gupta, Joshi, & Misra, 2010). 

 

1.2 Event of DDoS Attacks  

The first reported DDoS attack appeared in late 1999 against the University of Minnesota, 

Canada. The attack, which was launched by 227 Zombies (compromised computers) shut 

down the university‟s network for more than two days (Garber, 2000). DDoS attacks 

received further attention in February 2000 when a hacker using a DDoS attack crippled 

several major Internet companies including Amazon.com, Yahoo!, eBay, and CNN 

Interactive, significantly slowing them down or rendering their websites inaccessible (Singh & 

Juneja, 2010).     

Experts estimated that during the three hours Yahoo! was down, the company‟s loss of 

advertising revenue and e-commerce was approximately $500,000. The resulting down time 

for Amazon.com cost them an estimated $600,000. During the attack, the number of    
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CNN.com‟s users dropped to five per cent of the normal volume, while Buy.com went from 

100% availability to 9.4% (Hutt, Hoyt, & Bosworth, 2002). 

 
Despite their impact, there are no effective strategies to deal with these attacks which have 

been in existence for almost a decade. According to a worldwide infrastructure security 

report in 2012, half of the survey respondents (130 respondents in total) indicated they have 

experienced DDoS attacks against their infrastructures (e.g., routers, firewalls, and load 

balancers), and one-quarter encountered DDoS attacks against services used by their 

customers and partners during the survey period. The result also showed that about 10% of 

the attacks were launched by malicious insiders (Anstee, Bussiere, & Sockrider, 2012). 

 

                                           

       Figure 1.1: Size of Largest Reported DDoS Attack in Gbps from 2002 to 2012 (Anstee et al., 2012) 
 

Figure 1.1 illustrates the size of DDoS attacks from 2002 to 2012 (Anstee et al., 2012). The 

result shows that the size of the attack at the beginning was only 500Mbps. This is no 

surprise as there were not many DDoS attack tools available on the Internet and the speed 

of the Internet in early 2000 was limited.   

However, in 2012, the number of attacks significantly increased to 60Gbps, which was over 

120 times higher than the figure in 2002. The most noticeable feature of this graph is that the 

largest attack reported was 100Gbps (in 2010). “This was a very significant volume of traffic 

and was more bandwidth than some Internet operators had, let alone their customers. This 

can be concluded that the attackers are shifting to more advanced threat approaches” 

(Anstee et al., 2012). 

<1 1 3 
10 

17 
24 

40 
49 

100 

60 60 

0

20

40

60

80

100

120

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Si
ze

 o
f 

D
D

o
S 

A
tt

ac
k 

[G
b

p
s]

 

Year 

Size of Largest Reported DDoS Attack 



Introduction 
_________________________________________________________________________ 

3 
 

Although the number of DDoS attacks is growing every year, only 37% of the respondents 

(130 respondents in total) had developed an increased awareness of the DDoS threat in 

their organization, whereas, 63% retained the same level of awareness. Moreover, the report 

reveals that more than 10% of the respondents did not have DDoS mitigation capabilities in 

their networks (Anstee et al., 2012). 

 

1.3 Impact of DDoS on Business  

With the current trends toward data center consolidation and cloud computing, it is essential 

to keep up with developments relating to traffic monitoring techniques, DDoS defenses, and 

other points of interest regarding data centers. This section discusses the business impact 

caused by DDoS attacks in data centers around the world from October 2011 through to the 

end of September 2012 (Anstee et al., 2012).  

 

 

                       Figure1.2: Business Impact of DDoS Attacks in Data Center (Anstee et al., 2012) 

Figure 1.2 illustrates the impact of DDoS attacks on the business in data centers. The survey 

reveals that most data center operators (about 90% of server respondents) reported 

operational expenses as a business impact from DDoS attacks. This should come as no 

surprise since bandwidth comes at a cost, the failure to meet service-level-agreements 

(SLAs) can result in hefty penalties, and attacks can be time-consuming to deal with and 

waste valuable resources.   
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One-third of data center operators reported customer churn as a business impact. This also 

should come as no surprise since customer confidence in the availability of data center 

services can be shaken when the services are not available. As a result, the customers may 

feel that it is better to change to a datacenter that has better DDoS attack prevention. 

Revenue loss was reported by approximately one-third of the survey responders. According 

to the survey, the reasons were because the customers were not required to pay for services 

when they were unavailable, and the primary business of the organization is affected by an 

attack (Anstee et al., 2012).  

 

1.4 Related Work 

In 2006, Pack, et all. evaluated the efficiency of Access Control List (ACL) against DDoS 

attacks. The primary tool used to gather legitimate and attacking traffic values was Netflow. 

The result showed that the number of ACL rules affected the collateral damage (legitimate 

traffic was dropped unintentionally). By using 5 ACL rules, the collateral damage was 45%. 

This number significantly reduced to 15% if authors used 50 ACL rules. Interestingly, if the 

number of ACL rules used was more than 50, it would increase the collateral damage values 

again (Pack, Yoon, Collins, & Estan, 2006).   

In 2007, Chen, et all. proposed a unique technique to detect DDoS attacks on networks. The 

technique was called Distributed Change Point Detection. This technique detected attacks 

by using CAT (Change Aggregation Tree) to monitor the propagation of abrupt traffic 

changes inside the network. If traffic exceeded a preset threshold, an attack was identified. 

The testbed ran over multiple network domains, which had about 90 routers. There were four 

types of DDoS attacks used in this study, which were TCP, UDP, ICMP, and Smurf attack. 

The primary tool used to generate the attack traffic was Stacheldraht (Chen, Hwang, & Ku, 

2007). 

In 2009, Lu, et all. evaluated the impact of a UDP flood attack on a network using a testbed 

method. The performance metrics used in this study were the packet loss rate, delay and 

jitter. The network consisted of 9 routers and 14 computers with Intel Celeron 2.1 and 512 

memory running Linux. Three routers were connected with a 100M switch while the 

bandwidth of cables was between 10Mbps to 100Mbps. Iperf was the primary tool used to 

generate UDP flood traffic. In terms of experimental results, it showed that the average of 

packet loss before the attack was 0% while the delay jitter was 32.3%. However, the packet 

loss value during the attack went up to 14.08% while the jitter value slightly decreased from 

32.3% to 29.7% (Lu, Gu, & Yu, 2009). 
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In 2009, Rui, et all. proposed a UDP flood attack prevention method using Negative 

Selection Algorithm. To achieve this, the traffic threshold was set. If the UDP requests were 

greater than the threshold, the intrusion detection system would drop packets. The algorithm 

also had the ability to check whether the IP addresses came from the same region or not. If 

they were from different regions, they were likely to be spoofed IP addresses, and therefore, 

there was no reason to forward them to the next process. In addition, the simulation program 

in this study was built by .net 2005 and ran in a Windows Server 2003 system, and the total 

number of IP addresses tested was 12,960,000 IP addresses (Rui, Li, & Ling, 2009). 

In 2011, Rao conducted DDoS experiments based on TCP and UDP flood attacks. The 

network environment in this experiment consisted of 4 components: an attacker computer, 

legitimate computer, router, and victim computer. A traffic generator called Hyenae was used 

to generate the attack traffic, while Netflow and Wireshark were used to monitor the impact 

on the server during the attack. There were two defense mechanisms used in this study: 

Access Control Lists and Rate Limiting. The results showed that the average RTT of the 

server before the attack was 0.834ms, while, during the attack, this number increased to 

8.782ms. After using Access Control Lists and Rate Limiting, the average RTT went down to 

1.093ms and 6.985ms, respectively. In terms of traffic utilization, the result showed the 

average network traffic rate before the attack was constant at 241 Kbps, while, during the 

attack, this number significantly went up to 3216 Kbps (Rao, 2011).     

In 2011, Mohd, et all. proposed a UDP flood attack defense called Protocol Share Based 

Traffic Rate Analysis (PSBTRA). The result from the experiment showed that TCP was the 

main protocol used during the normal network operation (at 96.47%). During the UDP flood 

attack, however, the main protocol was changed from TCP to UDP (at 85.36%). Based on 

this result, the authors developed the UDP flood detection by comparing the proportion of 

incoming UDP traffic with the proportion of TCP and ICMP traffic. The detector would drop 

UDP packets if the proportion of UDP was greater than the proportion of TCP and ICMP. 

The advantage of this solution is that it has low computational overheads, and it can be 

applied in the real network environment (Z. Mohd et al., 2011).   

In 2011, Arora, et all. evaluated the impact of a UDP flood attack on the network using a 

simulation method. The network consisted of 19 nodes in total. Ten nodes were used as 

authorized nodes, 5 nodes as routers, 2 nodes for an attacker and victim, and 2 nodes were 

used as a server and a control node. UDP was used as an attacking protocol. To evaluate 

the impact of the attack, the authors ran legitimate traffic for 40 seconds, then launched the 

attack for 10 seconds during that time (Arora, Kumar, & Sachdeva, 2011).  
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In 2012, Kaur, et all. conducted an experiment on DDoS attacks using simulation software 

called Bonesi. The network in this study consisted of 3 computers: an attacker computer, 

legitimate computer, and FTP server. The purpose of this research was to study the impact 

of the user throughput between computer nodes before and during a UDP flood attack. The 

result showed that the average bandwidth before the attack was around 75 Kbps, while, 

during the attacks, the average bandwidth significantly went up to 130 Kbps (Kaur, 

Sachdeva, & Kumar, 2012). 

 

1.5 Motivation 

The main motivation of this research is to investigate the impact of a UDP flood attack and 

provide results using the new generation of Windows and Linux platforms, namely, Windows 

Server 2012 and Linux Ubuntu 13. The related works show that little work has been done to 

date on the testbed evaluation of these attacks on modern operating systems. 

Another motivation is the need to develop suitable solutions to address the rising cases of 

DDoS attacks on the computer network. Despite its impacts, there are no effective strategies 

to deal with such attacks although they have been in existence for almost a decade (Singh & 

Juneja, 2010). As York (2010) observed, many organizations, and government institutions 

have fallen victim to DDoS attacks. These organizations have lost consumers, important 

data, and some of them have gone out of business because of attacks. Governments have 

also lost important national data, impairing their ability to deliver services to the public. 

Consequently, an understanding of the characteristics of DDoS can assist in the 

development of appropriate security measures and could be used to prevent attacks in the 

future.  

The recent attacks on numerous banks in America in 2012 also indicated the need to come 

up with robust defense mechanisms against DDoS attacks. In that incident, a malicious 

hacker circumvented security mechanisms on servers in the financial sector. The attacker 

turned them into Zombies to launch attacks on bank websites including Bank of America, 

PNC Bank, and U.S. Bank. As a result, the attacks caused outages of websites, online 

services, and the operations of the banks for several hours.  

The attacks could have been prevented if appropriate security systems had been in place. 

All of these examples demonstrate the ineffectiveness of existing security mechanisms to 

detect and prevent DDoS attacks, and, as a consequence, are the motivation behind this 

research.  
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1.6 Research Contribution 

This research aims to produce new results that no other researchers have found before. 

Previous studies showed there were many researchers who used a simulation method to 

carry out their DDoS experiments. However, their methods usually relied on simulation 

software to simulate a switch, router, and attacking traffic, which are not realistic 

environments and may not be applied on the real network. Many researchers also tried to 

propose their DDoS defenses against the attack, however, many did not compare the 

efficiency of their solutions with other defenses.     

As a result, the purpose of this study is to evaluate the impact of a UDP flood attack on the 

new generation of Windows and Linux platforms using a testbed method. This method 

allows a researcher to set up a DDoS experiment using real traffic, real hardware, and real 

network environment. In this study, many comprehensive parameters were used, e.g., the 

user throughput, round-trip time, packet loss, CPU utilization, and jitter. This research also 

evaluates and compares the strengths and weaknesses of existing defense mechanisms 

such as Access Control Lists, Threshold Limit, Hybrid Method, IP Verify, Network Load 

Balancing, and Software Firewall. 

 

1.7 Structure of the Thesis 

This thesis consists of eight chapters. Chapter one contains an introduction, which briefly 

mentions the history of DDoS attacks, the motivation behind this study, followed by the 

contribution of this research. Chapter two provides an overall view of distributed denial of 

service attacks including the characteristics of DDoS attacks, different types of DDoS 

attacks, and methods of studying DDoS attacks. 

The third chapter covers the details of a UDP flood attack, which is the type of DDoS attack 

used in this study. This chapter explains the method of a UDP flood attack, and how the 

attack exploits the design of UDP protocol. The chapter also reviews UDP flood attack tools, 

and the background of the two protocols involved in a UDP flood attack, which are User 

Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP).   

The fourth chapter covers the hypotheses and the methodology employed for this research. 

This chapter also presents the procedures of data collection and the steps involved in the 

process of the literature review and the experiment for this research. Chapter five includes a 

detailed explanation of the network diagram and the specification of all hardware and 

software used in the test lab. This chapter also contains configurations, commands and 

monitoring tools used during the test.  
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Chapter six covers the evaluation of a UDP flood attack on the webserver using Windows 

Server 2012. The metrics used in this study were user throughput, round-trip time, packet 

loss, CPU utilization, and jitter. At the end of this chapter, six defense mechanisms results 

are described along with comparisons between them. Chapter seven covers the 

performance analysis of a UDP flood attack and defenses on Linux Ubuntu 13. Chapter eight 

is the final chapter, which covers the conclusion, discussion, and directions for future works. 

 

1.8 Chapter Summary  

This chapter described the advantages of the Internet and the security perspective. This 

chapter also discussed the impacts of DDoS attacks in past years using the survey 

conducted by Arbor networks incorporation in 2012. The final part in this chapter described 

related works, the motivation behind this research, and outlined the structure of this report. 

The next chapter provides knowledge about Distributed Denial of Service attacks in detail. 
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CHAPTER 2 

DISTRIBUTED DENIAL OF SERVICE ATTACKS 

 

This chapter covers the details of distributed denial of service attacks. Section 2.1 explains 

the definition of DDoS attacks and the attack methods. Section 2.2 describes the 

characteristics and the purpose of DDoS attacks. Section 2.3 covers three categories of 

DDoS attacks. Section 2.4 gives the overview of the different types of DDoS attacks. Section 

2.5 explains the existing DDoS prevention and defense mechanisms. Section 2.6 describes 

five common parameters that can be used to evaluate the impact of DDoS attacks. 

  

2.1 Definition of Distributed Denial of Service Attacks  

A Denial of Service (DoS) attack is one of the network attacks which makes resources and 

services unavailable to its legitimate users. The main purpose of the attack is to disable the 

uses of services on the Internet or the targeted network. Typically, the attack can be 

launched either from a local or remote location (Singh & Juneja, 2010).        

“Denial of Service” and “Denial of Service Attack” are two completely different concepts; the 

former refers to an event or a situation, and the latter refers to an intention-driven illegal act 

(Z. Mohd, Idris, Hussain, Stiawan, & Awan, 2011). 

A Distributed Denial of Service (DDoS) attack is part of a DoS attack; an attacker launches a 

massive number of attack packets from multiple distributed sources to the targeted machine, 

which makes it more dangerous than a traditional DoS attack. There are four components 

involved in the DDoS attacks:  

1. Real Attacker 

2. Host Computer or Victim 

3. Master Control Program 

4. Zombies  

The victim is the computer that is chosen for the attack, whereas, the real attacker is the 

person who is working behind the method for the attack. Normally, he/she works behind the 

shield of the master control program, which makes it harder to trace the attack back to its 

true source. The master control program is the interface between the attacker and Zombies.  



Distributed Denial of Service Attacks 
_________________________________________________________________________ 

10 
 

Zombies are computers that have been compromised and used to attack the victim 

computer (Singh & Juneja, 2010).  

 

2.2 Characteristics of DDoS Attacks 

The DDoS attack is an advanced and upgraded version of the DoS attack both of which 

have the same goal, that is, to shut a system down by exhausting the resources of the 

targeted network (Oriyano & Gregg, 2010). The following list describes some of the 

characteristics of DDoS attacks:  

 Attacks of this type are characterized by being very large using hundreds or even 

thousands of computers to conduct the attack. 

 DDoS attacks have two types of victim, namely, primary and secondary. The former 

is the recipient of the actual attack, while the latter are the computers used to launch 

the attack itself. 

 DDoS attacks can be very difficult to track back to the true source of the attacker 

because there are many computers involved, and the attacker can also use spoofed 

IP addresses to hide his/her IP addresses.    

 Defense is very difficult due to the number of attackers involved. Configuring a 

firewall or router to black few IP addresses is possible. However, with the large 

number of malicious IP addresses created by thousands of Zombie computers, it is 

nearly impossible to identify and block the source of the attack (Ciampa, 2012). 

 The impact of the DDoS attack is increased over a standard DoS attack because 

many hosts are involved, which multiplies the attack‟s strength and power (Oriyano & 

Gregg, 2010).  

 

2.3 Categories of DDoS Attacks 

DDoS attacks are not all the same. DDoS attacks can be separated into three broad 

categories, depending on how they carry out their goal of denying the service to legitimate 

users. The following is a list of DDoS attack categories: 

1. Consumption of bandwidth 

2. Consumption of resources 

3. Exploitation of programming defects    
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2.3.1 Consumption of Bandwidth 

Consumption of bandwidth is one of the most common DDoS attacks in computer networks. 

The purpose of this type of attack is to exhaust the network bandwidth flowing to and from a 

targeted machine. Adding more bandwidth is not a good solution because the attacker does 

not have to exhaust the bandwidth of the targeted system entirely, but rather use up so 

much of it that performance becomes unacceptable to users (Oriyano & Gregg, 2010). The 

following list is an example of well-known forms of attacks in this category. In addition, the 

details of these attacks are discussed in Section 2.4.   

 Smurf Attack 

 UDP Flood Attack 

 

2.3.2 Consumption of Resources 

This type of attack is similar to bandwidth consumption. The purpose of the resource 

consumption-based attacks is to consume a limited resource such as CPU and RAM. Unlike 

bandwidth consumption, the intruder focuses on the resources on a single system, which 

causes the service or the entire system to become overloaded (Oriyano & Gregg, 2010). The 

following list contains examples of the common forms of this attack. In addition, the details of 

these attacks are discussed in Section 2.4. 

 TCP and UDP Flood Attack 

 Smurf Attack 

 Ping Flood Attack 

 
2.3.3 Exploitation of Programming Defects   

This type of attack exploits known weaknesses in the system‟s design. Vulnerabilities of this 

type may have been exposed due to flaws in the system‟s design that were unintentionally 

put in place by the programmers or developers of the system (Oriyano & Gregg, 2010). The 

following list is an example of the well-known forms of attack in this category. In addition, the 

details of these attacks are discussed in Section 2.4. 

 Ping of Death  

 ARP Request Attack 
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2.4 Common Types of DDoS Attacks 

This section discusses the most common types of DDoS attacks, their characteristics, and 

mitigation techniques. These attacks are TCP SYN flood attack (Section 2.4.1), Smurf attack 

(Section 2.4.2), Application-Level flood attack (Section 2.4.3), ARP request attack (Section 

2.4.4), ICMP flood attack (Section 2.4.5), Ping of Death (Section 2.4.6), and UDP flood 

attack (Section 2.4.7).  

 

2.4.1 TCP SYN Flood Attack 

The TCP SYN flood attack exploits a vulnerability of TCP 3-way handshake (SYN, SYN-

ACK, and ACK). During the attack, the attacker sends SYN packets with source IP 

addresses that do not exist to the targeted computer (e.g., server). When the server stores 

the request information into the memory stack, it will wait for confirmation from the client that 

sends the request. While the request is waiting to be confirmed, it will remain in the memory 

stack.  

Because these source IP addresses are spoofed IP addresses, the server will not receive 

confirmation packets. Eventually, the requests will accumulate and fill up the entire memory 

stack. Figure 2.1 shows the method of a TCP flood attack (Kavisankar & Chellappan, 2011). 

                   

Computer A

Computer B

Computer C

Request

Response

Request

Response

Request

Response

Server

Waiting for reply 

from B

Waiting for reply 

from A

Waiting for reply 

from C

                                   
                                 

                                Figure 2.1: Vulnerability of TCP 3-way Handshake (Ciampa, 2012) 
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2.4.1.1 IP Spoofing in TCP Flood Attack 

IP Spoofing is used to hide the original IP address of the attacker. This technique allows the 

attacker to gain unauthorized access to the network by changing his original IP address to 

the IP address of the trusted machine in that network. A TCP flood attack can also be 

launched from compromised computers using spoofed IP address, or genuine source IP 

addresses, given that the compromised computers used are configured to ignore the 

SYN/ACK packets from the target (Kavisankar & Chellappan, 2011).   

 

2.4.1.2 Mitigation Techniques for TCP Flood Attack 

A TCP flood attack can be prevented by using the server as the attack detector. To detect 

the attack, the SYN request sent by the client will be stored in the database and will wait until 

the client sends the acknowledgement (ACK signal) to the server. Information on the client 

that is stored in the database consists of the IP address and the SYN count. If the number of 

SYN requests exceeds the threshold, it drops the packets from that source IP address 

(Kavisankar & Chellappan, 2011).   

The network administrator can also use SYN cookies to prevent a TCP flood attack based 

on spoofed IP addresses. SYN cookies will not allocate resources until the 3-way handshake 

completes. However, one of the disadvantages of this method is that this solution uses huge 

computing resources such as the CPU and RAM of the server (Lemon, 2002).  

 

2.4.2 Smurf Attack  

The smurf attack is a type of DDoS attack that is designed to exhaust the computer resource 

and network bandwidth. According to the ICMP protocol, when a device on the network 

receives a “ping” request, it replies to the source IP address with a “pong” message 

informing the status of the receiver. The smurf attack exploits the design of ICMP and 

TCP/IP. During the attack, the attacker crafts large numbers of ICMP packets with the 

intended victim‟s spoofed source IP address, and broadcasts to the computer network 

(Wang, 2009).  

All devices on the network that have received these broadcast messages will respond with 

“pong” messages back to the victim computer. This will exhaust the computing resources of 

the victim and associated computers. In addition, the degree of the attack depends on the 

number of machines on the network (that receive the broadcast messages) and the attack 

packet rates sent by the attacker (Wang, 2009). Figure 2.2 illustrates the smurf attack 

methods.    
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                                               Figure 2.2: Smurf Attack Methods (Wang, 2009) 

 
2.4.2.1 Mitigation Techniques for Smurf Attacks 

The smurf attack can be prevented by using a firewall or a router to filter ICMP packets. 

According to Figure 2.2, there are three components involved in the smurf attack: the attack 

network, intermediary network, and the victim network. In order to prevent smurf attacks, all 

three components must do their part in keeping the attacker out. First, the attacker‟s network 

should not allow its users to craft spoofed IP addresses. To achieve this, the firewall needs 

to be trained to inspect both ingress and egress traffic. Similarly, the intermediary network 

must not be exploited by the attacker for amplifying the malicious traffic (Kumar, 2007).  

Another way to protect the network against a smurf attack is to disable the IP directed 

broadcast, which is often not needed. In addition, many operating systems can be 

configured to prevent the machine from responding to ICMP messages such as the security 

capabilities of Windows Service Pack 2 (Kumar, Azad, Gomez, & Valdez).  

 

2.4.3 Application-Level Flood Attack 

Traditionally, DDoS attacks are carried out at network layer level, e.g., TCP flood attack, and 

UDP flood attack (known as Net-DDoS attacks). The purpose of these attacks is to consume 

the network bandwidth and deny service to the legitimate users of the victim systems. 

However, when the Net-DDoS attacks fail, the attacker shifts the offensive strategies to 

application layer attacks (known as App-DDoS attacks).   

 

Zombies 
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App-DDoS attacks are designed to exhaust the server resources such as CPU, memory, 

bandwidth, and disk utilization. This attack occurs when the attacker sends a large number 

of queries to the victim‟s database to bring the server down, or attack the webserver by 

sending a massive number of HTTP GET requests. App-DDoS attacks on the webserver are 

similar to a “flash crowd” which is the situation when many legitimate users access a popular 

website simultaneously. As a result, it is difficult to distinguish between legitimate and 

attacking traffic (Xie & Yu, 2009).  

 

2.4.3.1 Mitigation Techniques for Application-Level Flood Attack 

Client Puzzle Protocol (CPP) is an algorithm that will not allow any abuse of the server 

resources. According to this algorithm, any client that wants to establish a connection with 

the server has to first correctly solve a mathematical puzzle. After solving the mathematical 

puzzle, the client returns the solution to the server and the server will quickly confirm, reject 

or drop the connection, based on the client‟s solution (Rajesh, 2013). 

 

2.4.4 ARP Request Attack 

In computer networks, media access control addresses (MAC addresses) are used in data 

transfer. It is important to convert an IP address to a MAC address in order to communicate 

in a LAN. Address Resolution Protocol (ARP) is used for this purpose. When a source wants 

to know the MAC address of the destination IP node, it broadcasts the ARP request to every 

host in the network. The destination node sends a reply to the source with a MAC address 

through ARP reply in a unicast mode. Figure 2.3 shows an example of communication in 

LAN using ARP (Vidya & Bhaskaran, 2011). 
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                              Figure 2.3: Communication in LAN using ARP (Vidya & Bhaskaran, 2011) 

In terms of an ARP request attack, it is an attack situation intentionally created by an 

attacker from within the local network. During the attack, the attacker keeps sending a large 

number of broadcast packets, with IP addresses within a subnet range or even to IP 

addresses not present in the local subnet. The purpose of this attack is to reduce the 

bandwidth with unwanted traffic or collect the IP/MAC address details of all machines for 

later attacks. In addition, when a network administrator monitors the network traffic using a 

network analyzer, he/she will detect a large series of Address Resolution Protocols (Vidya & 

Bhaskaran, 2011). 

 

2.4.4.1 Mitigation Techniques for ARP Request Attack 

ARP request attacks can be prevented by monitoring the ARP traffic on each LAN segment. 

Programs such as SNMP and ARPwatch can be used to monitor changes in ARP tables in a 

router, and can switch to raise the alarm for the onset of such ARP attacks. Another way to 

prevent these attacks is to set up the traffic threshold for broadcast/multicast traffic on a per-

port basis. In addition, these thresholds on a per-port basis should be set up by limiting the 

bandwidth consumed by ARP broadcasts on a switch port (Kumar & Gomez, 2010). 

 

2.4.5 ICMP Flood Attack 

ICMP is a part of the TCP/IP suite that is designed to handle error and control messages. 

One of the best known examples in practice is the ping utility. It uses ICMP to check remote 

hosts for responsiveness, display the round-trip time, or detect the communication failures 

between hosts (Bogdanoski & Risteski, 2011).       
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In terms of an ICMP flood attack, the attack overwhelms the targeted computers by sending 

a large number of “ICMP Echo Requests” to the targeted computer. The victim receiving 

these packets will reply “ICMP Echo Reply” back to the source IP address. As a result, it will 

consume both incoming and outgoing bandwidth, and in extreme cases it can disable the 

network connectivity (Bogdanoski & Risteski, 2011).        

 

2.4.5.1 Mitigation Techniques for ICMP Ping Flood Attack  

ICMP flood attacks can be prevented by blocking the ICMP packets from both incoming and 

outgoing traffic. One of the disadvantages is that it may cause issues when using a ping 

command to diagnose network problems. Another solution is to block certain types of ICMP 

packets or limit the speed of sending ICMP messages from the source. As a result, if 

registered ICMP traffic is higher than the threshold, the packets are dropped (Bogdanoski & 

Risteski, 2011).   

 

2.4.6 Ping of Death  

A ping of death is a type of attack on a computer that involves sending an oversized ping 

packet to a computer. According to RFC 791, a correctly formed ping message is typically 56 

Bytes in size, or 84 Bytes when the IP header is considered (Exist & Postel, 1981). In the 

past, many computer systems could not properly handle a ping packet larger than the 

maximum IPv4 packet size of 65,535 Bytes. Larger packets could crash the targeted 

computer. Nevertheless, this type of attack would not be harmful to the computer system 

today since modern operating systems are all patched against this vulnerability (Erickson, 

2008).  

 

2.4.6.1 Mitigation Techniques for Ping of Death   

Ping of death can be prevented by adding “checks” in the reassembly process. The check is 

used to ensure that the sum of the “Total length” and “Fragment Offset” fields of each IP 

fragment is not bigger than the size specified (65,536 Bytes). If the sum is bigger, then the IP 

fragment is ignored, and the packet is deemed invalid. In addition, the check can be 

performed by firewalls in order to protect the computer systems that have not been patched 

against this attack. Another solution for this problem is to use a memory buffer to 

reassemble the packet so that it is larger than 65,535 Bytes (Erickson, 2008).  
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2.4.7 UDP Flood Attack  

A UDP flood attack in DDoS attacks is a method causing host-based denial of service. It 

occurs when an attacker crafts a large number of UDP packets to random destination ports 

on a victim computer. The victim computer, on receipt of the UDP packet, would respond 

with appropriate ICMP packets if its computer ports are closed. Numerous packet responses 

would slow down the system or crash it (Rui, Li, & Ling, 2009).  In addition, a UDP flood 

attack is a type of DDoS attack used in this study. The details of this attack, including its 

characteristics, the attack methods, and attack tools, are discussed in Chapter 3.  

 

2.4.7.1 Mitigation Techniques for UDP Flood Attack   

A UDP flood attack can be prevented by identifying the validity of source IP address. One of 

the effective solutions is Unicast RPF (Unicast Reverse Path Forwarding). When a router 

receives the IP packet, it checks the route table, and confirms whether the route information 

of the IP source address for the packet exists. If there is no route information for data return 

in the table, it is very likely that the IP source address is forged by the attacker, and then the 

router will drop this packet (Rui, Li, & Ling, 2009). In addition, the details of UDP flood attack 

defenses are discussed in Section 5.2. 

 

2.5 Classification of DDoS Prevention Mechanisms    

DDoS prevention mechanisms can be separated into two categories: general techniques 

and filtering techniques. The former involves the system protection of common preventive 

measures, while the latter utilizes the router to filter and drop attack packets (Gupta et al., 

2010). The next section discusses general prevention techniques.  

 

2.5.1 General Prevention Techniques   

This section details five general prevention techniques that can be implemented against 

DDoS attacks on the network. These prevention techniques are disabling unused services 

(Section 2.5.1.1), installing latest security patches (Section 2.5.1.2), disabling IP broadcast 

(Section 2.5.1.3), firewalls (Section 2.5.1.4), and IP hopping (Section 2.5.1.5). 
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2.5.1.1 Disabling Unused Services  

The concept of this technique is to disable network services that are not needed or are 

currently unused. Since there are over 60,000 usable ports in a computer, it means, the 

fewer the applications and open ports in the hosts, the less likely there is a chance to exploit 

vulnerabilities by attackers. This technique is mainly used to prevent attacks such as UDP 

flood attacks, TCP flood attacks, and ICMP flood attacks (Gupta et al., 2010).  

 

2.5.1.2 Installing Latest Security Patches  

Before attacking the network, the attacker needs to find the vulnerabilities of the targeted 

system. These vulnerabilities may be from improper network design, a lack of network 

security, or applications being used which have security holes (especially operating 

systems). Therefore, it is important that all the relevant latest security patches must be up to 

date. Due to the quantity of patches, organizations may use an automated patch update 

service to ensure that patches are installed in a timely fashion (Ciampa, 2012).    

 

2.5.1.3 Disabling IP Broadcast 

Another way to protect a network from DDoS attacks is to disable IP broadcasts. Some 

DDoS attacks such as the smurf attack, exploit this design by sending a broadcast address 

with the victim‟s spoofed source IP address to the computer network. All devices on the 

network that have received these broadcast messages will respond with “pong” messages 

back to the victim computer. This problem can be prevented by disabling the broadcast 

function so that an attacker cannot use IP broadcasts as the amplifiers (Chaba, Singh, & 

Aneja, 2009).     

 

2.5.1.4 Firewalls 

The firewall can be used to protect the machines within the network from the simple flooding 

type of attacks. The firewall has simple rules such as to allow or deny protocols, IP 

addresses and computer ports. However, the disadvantage of the firewall is that it may not 

be able to prevent some complex attacks or prevent attacks on the web service (e.g., the 

TCP SYN flood attack). This is because it cannot distinguish between legitimate and 

attacking traffic (Gupta et al., 2010). 
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2.5.1.5 IP Hopping 

DDoS attacks can be prevented by changing the location or IP address of the active server 

proactively within a pool of homogeneous servers or with a pre-specified set of IP address 

ranges (Gupta et al., 2010). By doing this, the victim computer‟s IP address is invalidated by 

changing it with a new one. Once the IP address change is completed, all Internet routers 

will be informed and edge routers will drop the attacking packets. However, the 

disadvantage of this solution is that the attacker can launch the attack at the new IP address 

(Gupta et al., 2010).    

 

2.5.2 Filtering Defenses Techniques   

This section details five filtering defense techniques that can be implemented against DDoS 

attacks on the network. These prevention techniques are ingress and egress filtering 

(Section 2.5.2.1), history-based IP filtering (Section 2.5.2.2), router packet-based filtering 

(Section 2.5.2.3), capability-based method (Section 2.5.2.4), and a source address validity 

enforcement (Section 2.5.2.5). 

 

2.5.2.1 Ingress and Egress Filtering 

Ingress filtering is an approach to set up an edge router to disallow incoming packets with 

illegitimate source addresses into the network. In terms of egress filtering, it is an outbound 

filter, which ensures that only valid IP addresses can leave the network otherwise they are 

dropped. The key requirement for the filtering techniques is information on the expected IP 

addresses at a particular port (Gupta et al., 2010).  

Both ingress and egress filtering can be applied not only to IP addresses, but also port 

number, protocol type, or any other criteria of importance. However, it is difficult to deploy 

ingress/egress filtering universally. If the attacker carefully chooses a network without 

ingress/egress filtering to launch the attack, or the attacker spoofs IP addresses from within 

the subnet, the attack can go undetected (Gupta et al., 2010).         

 

2.5.2.2 History-Based IP Filtering  

History-based IP filtering technique is based on the principle that the set of source IP 

addresses during the normal operation tends to remain stable, whereas, during DDoS 

attacks, most IP addresses have not been seen before. Based on this idea, this technique 

utilizes IP Address Database (IAD) to record frequent source IP addresses. Therefore, if the 

source IP address is not in the database, the filter determines that the IP address has been 



Distributed Denial of Service Attacks 
_________________________________________________________________________ 

21 
 

spoofed and drops this packet. One of the disadvantages of this solution is that it cannot 

prevent DDoS attacks based on real IP addresses. It also requires an offline database to 

keep track of IP addresses. As a result, the cost of storage and information sharing is high 

(Gupta et al., 2010). 

 

2.5.2.3 Router Packet-Based Filtering 

Router packet-based filtering is an improvement on the ingress filtering technique. It is based 

on the principle that each link in the core of the Internet has a limited set of source 

addresses. Therefore, if an unexpected source address appears in an IP packet on a link, it 

determines that the source address has been spoofed, hence the packet is dropped (Gupta 

et al., 2010). However, this scheme has several limitations. The first limitation is that the 

router-based filtering technique may drop legitimate packets if a routing table has been 

updated or changed. Another limitation is that this technique relies on valid BGP messages 

to configure the filter. If an attacker can hijack a BGP session and change BGP messages, it 

is possible to mislead routers to update filtering rules in favor of the attacker (Gupta et al., 

2010). 

  

2.5.2.4 Capability-Based Method      

The Capability-based method allows the destination to control the traffic directed towards 

itself. To achieve this, a router inserts “a mark” in the source packet before sending it to the 

destination. The destination can determine whether the packet should be allowed or 

dropped. If permission is granted the packet can pass through the network via the router, 

otherwise the packet is rejected. Packets that do not have a “mark” are considered as 

suspicious packets. One of the benefits of this architecture is that it gives the destination the 

ability to control the traffic according to its own policy (Anderson, Roscoe, & Wetherall, 

2004).  

 

2.5.2.5 Source Address Validity Enforcement 

The Source Address Validity Enforcement (SAVE) is a new protocol that allows routers to 

store information on expected source IP packets, and drop incoming IP addresses that are 

not in the list. The purpose of the protocol is to inform routers about the scope of the 

incoming IP address that should be expected at each interface. To achieve this, SAVE 

broadcasts a message that contains valid source address information to all destinations. By 

doing this, it allows each router to create an incoming table that associates each link of the 

router (Gupta et al., 2010). Nevertheless, the efficiency of this solution depends on the 
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number of SAVE deployments in the networks associated because the attacker may spoof 

the IP addresses of the network that do not deploy this protocol (Gupta et al., 2010).  

 

2.6 DDoS Impact Metrics 

This section details the five common parameters that can be used to evaluate the impact of 

a DDoS attack on the network. In addition, the details of these parameters and an example 

of the outputs will be presented in Section 4.3.2.1.  

 Throughput  

 Round-trip Time 

 Packet Loss 

 CPU Utilization  

 Jitter 

 
2.6.1 Throughput  

Throughput is defined as the number of bytes transferred from the source to the destination. 

Performance of the throughput between networks can be impacted or affected by some 

activities such as the network design, LAN cards, switches, and routers. This metric should 

not be used to measure the impact of a DDoS attack in some applications, e.g., video 

conferencing, and voice over IP applications, because a high throughput value may still not 

satisfy the quality of service required by the user (Mirkovic, Sonia, et al., 2009).            

 

2.6.2 Round-Trip Time  

Round-trip time is defined as the interval between the time when a request is issued and the 

time when a complete response is received from the destination. This metric is mainly used 

to measure the service denial of interactive applications such as web applications, FTP, and 

telnet (McCabe, 2010). RTT should not be used to measure the impact of DDoS attacks on 

the non-interactive applications (such as email or short message service) since these 

applications are insensitive to delay, or they have large thresholds for acceptable request 

and response delay (Mirkovic, Sonia, et al., 2009).     
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2.6.3 Packet Loss 

Packet loss is defined as the number of packets or bytes lost due to the interaction of the 

legitimate traffic with the attack, or due to collateral damage from a defence‟s operation 

(Yaar, Perrig, & Song, 2004). The loss metric primarily measures the presence and extent of 

congestion in the network due to flooding attacks, but cannot be used for some attacks that 

do not congest network resources or do not continually create congestion, e.g., Ping of Dead 

attack    (Mirkovic, Sonia, et al., 2009).            

  

2.6.4 CPU Utilization  

CPU utilization is the percentage of a computer‟s CPU resource taken during the processing 

of an application or a task. Some types of DDoS attacks, such as TCP flood attack, UDP 

flood attack, and Smurf attack, are designed to exhaust the victim‟s CPU resource (Oriyano 

& Gregg, 2010).  

 

2.6.5 Jitter   

Jitter or packet delay variation is the variation in the time between packets arriving, which 

can be caused by timing drift, route changes, or network congestion. Some types of DDoS 

attacks, such as UDP flood attack and smurf attack, can significantly increase jitter values. In 

addition, high jitter values can impact the performance of some applications, e.g., voice over 

IP, online games, and video conference applications (Marti, Fuertes, Fohler, & 

Ramamritham, 2001). 

 

2.7 Chapter Summary  

This chapter reviewed the background of DDoS attacks including the characteristics, and 

different types of DDoS attacks. The different types of DDoS prevention mechanisms were 

also discussed. These mechanisms can be separated into two categories: general 

techniques and filtering techniques. The former involves the system protection of common 

preventive measures, while the latter utilizes the router to filter and drop attack packets. The 

final section covered five common parameters used to evaluate the impact of DDoS attacks.  

The next chapter provides the details of a UDP flood attack, which is the type of DDoS 

attack used in this study. 
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CHAPTER 3 

UDP FLOOD ATTACK 
 

This chapter covers the details of a UDP flood attack, which is the type of DDoS attack used 

in this study. Section 3.1 provides the definition of a UDP flood attack. Section 3.2 describes 

the characteristics of a UDP flood attack, and how the attack exploits the design of a UDP 

protocol. Section 3.3 describes a technique that can be used to hide the true source of the 

attack. Section 3.4 explains the method of a UDP flood attack using Zombies. Section 3.5 

covers several types of UDP flood attack tools. Section 3.6 covers a brief description of the 

two protocols involved in a UDP flood attack.  

 

3.1 Definition of a UDP Flood Attack  

A User Datagram Protocol (UDP) flood attack in DDoS attacks is a method causing host-

based denial of service. It occurs when an attacker crafts numerous UDP packets to random 

destination ports on a victim computer. The victim computer, on receipt of the UDP packet, 

would respond with appropriate ICMP packets if one of these ports is closed. Numerous 

packet responses would slow down the system or crash it (Rui, Li, & Ling, 2009).  

Both TCP and UDP flood attacks are categorized as high rate flood attacks because they 

are launched by flooding a massive amount of TCP or UDP datagrams to overwhelm the 

victim computer. However, the difference between them is that the former intends to 

consume the victim computer‟s resources (e.g., CPU) while the goal of a UDP flood attack is 

to exhaust the connection bandwidth. This makes a UDP flood attack more severe than a 

TCP in terms of its ability to cause more degradation of the legitimate traffic bandwidth 

(Mirkovic, Hussain, Fahmy, Reiher, & Thomas, 2009).      

 

3.2 Characteristics of a UDP Flood Attack  

A UDP flood attack exploits the generic design of UDP protocol behavior. Unlike TCP, UDP 

is a connectionless protocol and does not involve 3-way handshaking functionality as in 

TCP. During the attack, a large number of UDP packets are sent to either random or 

specified ports on the victim computer. Typically, this attack is designed to attack random 

victim ports. When the victim computer receives a UDP packet, it will determine which 

application is waiting on the destination port. If there is no application that is waiting on the
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port, the victim computer will generate an ICMP packet of „„destination unreachable‟‟ to the 

forged source address. If enough UDP packets are delivered to ports of the victim, the 

targeted computer will go down (Singh & Juneja, 2010).  

 

                           Figure 3.1: UDP Behavior Analysis to Closed Ports (Singh & Juneja, 2010) 

Figure 3.1 shows an example of UDP behavior to closed ports. The victim computer will 

respond with an ICMP message, every time a UDP request is received on a closed port 

(Singh & Juneja, 2010). For example, the attacker sends the UDP packet to the destination 

port (port 5001) on the victim computer. If this port is closed, the victim computer will 

respond by sending an appropriate ICMP packet back to the attacker computer (ICMP 

destination unreachable). The attacker will keep sending UDP packets to other computer 

ports of the victim (ranging from 1 – 65535) and the victim system, on receipt of the UDP 

packets has to respond with ICMP packets if one of these ports is closed. 

 

3.3 UDP Flood Attack using Spoofed IP Address 

IP spoofing is a technique that involves replacing the IP address of an IP packet's sender 

with another machine's IP address. This technique is most often used in distributed denial of 

service attacks, and especially in a UDP flood attack. In such an attack, the goal is to flood 

the victim computer with overwhelming UDP packets, and the attacker does not care about 

receiving responses to the attack packets (Singh & Juneja, 2010). 

Packets with spoofed addresses are thus suitable for such an attack. They have many 

advantages for this purpose. For example, they are more difficult to filter because each 

spoofed packet appears to come from a different IP address, and these spoofed addresses 
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also hide the true source of the attack. Moreover, when multiple compromised computers 

are participating in the attack, all sending spoofed traffic, it is very difficult to distinguish the 

difference between legitimate and attacking traffic  (Singh & Juneja, 2010).   

 

 
                     Figure 3.2: UDP Flood Attack using Spoofed IP Addresses (Singh & Juneja, 2010) 

Figure 3.2 illustrates an example of a UDP flood attack using spoofed IP addresses. It shows 

that many UDP packets are sent from random source IP addresses to different port 

numbers. For example, the attack replaces his/her IP address (192.168.1.1) with a spoofed 

IP address (128.111.10.1) and sends the UDP packet to the destination port (port 5001) on 

the victim computer. If this port is closed, the victim computer will respond with an ICMP 

packet back to the spoofed IP address indicating that the port is closed. The attacker will 

keep changing his IP address and destination ports, and the victim computer, on receipt of 

the UDP packets, has to respond by sending ICMP packets back to the forged source 

addresses.   

 

3.4 Mechanism of UDP Flood Attack using Zombies 

There are four components involved in a UDP flood attack using Zombies: a victim 

computer, a real attacker, a master control program, and Zombies or Daemons. The victim is 

the computer that is chosen for the attack, whereas, the real attacker is the person who is 

working behind the method for the attack. Normally, he/she works behind the shield of the 

master control program, which makes it harder to trace back to it. The master control 
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program is the interface between the attacker and the Zombies. Zombies are computers that 

have been compromised and used to attack the victim computer.  

 

                     Figure 3.3: Mechanism of UDP Flood Attack using Zombies (Singh & Juneja, 2010) 

Figure 3.3 illustrates the mechanism of a UDP flood attack using Zombies. A UDP flood 

attack occurs when the attacker sends the attack command, the victim‟s IP address, attack 

methods, and the attack duration to a master control program. The master control program 

then forwards the attack instruction to their agents, which may be either Zombies or 

Daemons (compromised computers). The difference between Zombies and Daemons is that 

Daemons will be used in the direct attack method, whereas, Zombies will be used in the 

reflector method. In addition, the direct attack method is when the attacker arranges to send 

out a large number of UDP packets directly toward the victim computer. On the other hand, a 

reflector attack is an indirect attack in that intermediary nodes (e.g., routers) are innocently 

used as attack launchers (Chang, 2002).   

On receiving the attack instruction from the attacker, Zombies start sending UDP packets 

including port numbers to the victim computer. When the victim computer receives the 

packets, it sends ICMP packets back to those Zombies indicating that the port is closed. 

Zombies will keep sending UDP packets to the victim computer until all its resources have 

been consumed (Singh & Juneja, 2010).  

Multiple Zombies are under the control of each master control program and even the 

masters can be multiple, which leads to a large number of UDP packets being delivered to 

the victim computer. This ensures flooding the system by consuming the entire bandwidth 

and other resources (Singh & Juneja, 2010). 
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3.5 UDP Flood Attack Tools  

One of the main reasons that makes DDoS attacks difficult to prevent is the simplicity and 

power of attack tools (Yaar, Perrig, & Song, 2004). In the past, an attacker needed to have 

technical knowledge of attack tools before they could be used. Today, however, many attack 

DDoS tools are freely available and do not require any technical knowledge. The following 

sections describe two UDP flood attack tools, which are the agent-based and IRC-based 

types (Douligeris & Mitrokotsa, 2004).        

 

3.5.1 Agent-based Attack Tools 

This section covers the agent-based UDP flood attack tools. Examples of the attack tools are 

Trinoo (Section 3.5.1.1), Tribe Flood Network (Section 3.5.1.2), TFN2K (Section 3.5.1.3), 

Shaft (Section 3.5.1.4), and Mstream (Section 3.5.1.5). 

 

3.5.1.1 Trinoo  

Trinoo is a bandwidth depletion attack tool that can be used to launch a UDP flood attack 

against one or many IP addresses. The attack uses constant-size UDP packets to target 

random ports on the victim computer. Typically, Trinoo agents need to be installed on the 

compromise machines (Zombies) first. This allows the attacker to remotely compile and run 

the attack via Zombies. The handler is used as an intermediary between the real attacker 

and Zombies, which is done via UDP packets (Douligeris & Mitrokotsa, 2004).         

 

3.5.1.2 Tribe Flood Network     

Tribe Flood Network (TFN) is an attack tool that provides an attacker with the ability to 

exhaust both the resources and bandwidth of a targeted machine. Communication between 

the attacker and the control master program is done via a command line interface but with 

no encryption between them. In addition, TFN uses ICMP packets to communicate between 

the handler and the Zombies which makes it harder to detect an attack, and attacks can 

often be overlooked by a firewall. TFN can implement different types of attacks including 

UDP, and Smurf attacks (Douligeris & Mitrokotsa, 2004).     

     

3.5.1.3 TFN2K 

TFN2K is a more advanced version of TFN. TFN2K adds many features including the 

encrypted messaging between all of the attack components (using CAST-256 algorithm). It 

also has the ability to hide the detection from intrusion detection systems. TFN2K can 
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generate different types of DDoS attacks including UDP flood attacks, ICMP flood attacks, 

and Smurf attacks. An advantage of TFN2K is that the protocols used to communicate 

between attack components can be random during the attack, which makes it harder to 

detect the attack by scanning the network (Douligeris & Mitrokotsa, 2004).            

 

3.5.1.4 Shaft  

Shaft is an advanced version of Trinoo, which enables an attacker to communicate with the 

handlers via a TCP telnet connection. An advantage of Shaft is the ability to combine 

different types of attacks into one attack, e.g., to change between TCP, UDP, and ICMP 

flood attacks. A distinctive feature of Shaft is the ability to change the attacker‟s IP address 

and port in real-time during the attack, hence making detection by the firewall more difficult. 

Besides, Shaft also provides statistics on the flood attack. The statistics are used by the 

attacker to know when the victim system is completely down and allows him/her to know 

when to stop adding Zombies to DDoS attacks (Douligeris & Mitrokotsa, 2004).          

 

3.5.1.5 Mstream  

Mstream provides a simple point-to-point UDP flood attack that can obstruct the function of 

tables used by fast routing routines in switches. TCP and UDP packets are used as the main 

protocols for communication between attack components; however, they do not provide 

encrypted messaging between them. The advantage of Mstream is that the master machine 

can be controlled remotely by multiple attackers using a password-protected interactive 

login. This tool can also inform all connected attacks whether access to the program has 

been successful or not (Douligeris & Mitrokotsa, 2004).         

 

3.5.2 IRC-based Attack Tools 

Internet Relay Chat (IRC) based DDoS tools were developed after the agent handler attack 

tools and as a result, IRC-based tools are more sophisticated. They combine many of the 

advantages and distinctive features that can be found in the previous generation of attack 

tools. Examples of IRC-based tools include Trinity (Section 3.5.2.1) and Knight (Section 

3.5.2.2).   
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3.5.2.1Trinity 

Trinity is an IRC-based DDoS attack tool that can generate different types of DDoS attacks 

such as UDP flood and TCP flood attacks. Before launching an attack, each Trinity 

compromise machine needs to join a specified IRC channel and waits for commands. By 

using the legitimate IRC service for communication between the attacker and Zombies, it 

eliminates the need for a master machine and elevates the level of the threat (Douligeris & 

Mitrokotsa, 2004).       

 

3.5.2.2 Knight 

Knight is a lightweight and powerful IRC-based DDoS attack tool that provides different 

types of DDoS attacks including UDP flood and TCP flood attacks (Gupta et al., 2010). 

Knight is designed to run on Windows operating systems, and has features such as a 

checksum generator, and an automatic updater via HTTP or FTP. In addition, the Knight tool 

is typically installed by using a Trojan horse program (Douligeris & Mitrokotsa, 2004).        

 

3.6 Protocols involved in a UDP Flood Attack 

This section gives a description of two protocols involved in UDP flood attacks, namely, UDP 

and ICMP. This section also provides a brief description of TCP. In this study, TCP was used 

as legitimate traffic, and used to compare it with attacking traffic. Therefore, knowledge of 

these protocols is required.  

 

3.6.1 User Datagram Protocol 

The User Datagram Protocol (UDP) was designed by David Patrick Reed in 1980 (Sosinsky, 

2009). It is one of the members of the Internet Protocol suite used for sending messages 

between hosts on the IP network. Unlike TCP, UDP is an unreliable protocol, which uses a 

simple transmission model with a minimum of protocol mechanisms and it does not attempt 

to ensure the validity of the data that is sent. However, this protocol provides checksums for 

data integrity, and port numbers of the source and destination for addressing different 

functions (Sosinsky, 2009).      

UDP does not maintain the overhead, therefore, it can transfer information faster than TCP 

(Kurose & Ross, 2010). This makes UDP suitable for applications that do not require 

reliability, e.g., voice, music, and video applications. UDP is often used in both time-sensitive 

and real-time applications since dropping packets is preferable to waiting for delayed 

packets in both applications (Kurose & Ross, 2010). 
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A number of UDP‟s characteristics make it suitable for certain applications, including:     

 It provides datagrams, which is suitable for modeling other protocols such as 

Network File System (NFS) and IP tunneling.  

 It is transaction-oriented, which is suitable for simple query-response protocols such 

as Network Time Protocol (NTP) and Domain Name System (DNS). 

 It is stateless, which makes it suitable for large numbers of clients such as in 

streaming media applications. 

 It is simple, which is suitable for bootstrapping such as Dynamic Host Configuration 

Protocol (DHCP). 

 The lack of retransmission delays makes it suitable for time-sensitive applications 

such as video conferencing and Voice over IP. 

 It is compatible with unidirectional communication which makes it suitable for 

broadcast and shared information such as service discovery and broadcast time.    

3.6.1.1 UDP Packet Structure  

UDP datagrams use a simple message format. There are two features found in the 

datagram: integrity verification, and multiplexing. The former is used to determine the validity 

of the datagram while the latter is used for transmission of multiple data streams for 

applications that support this attribute.  

The UDP header consists of four fields, each of which has sixteen bits. The use of the fields 

called “Source port” and “Checksum” is optional when IP version 4 is used, but “Checksum” 

is required for IP version 6 (Sosinsky, 2009). Table 3.1 shows the structure of a UDP 

datagram: 

 

Offsets    

Octet 

0 

 

1 

 

2 

 

3 

 

0 Source port Destination port 

4 Length Checksum 

                                            Table 3.1: Structure of a UDP Datagram (Sosinsky, 2009) 
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Source port number  

A source port number is an optional field which is used to identify the sender‟s port or the 

port number that needs to reply back. In case this field is not used, a value of zero is 

inserted. In addition, if the source host is a server, the port number is likely to be a common 

port number, while the port number tends to be an ephemeral port number if the source host 

is a client (Forouzan, 2000). 

 

Destination port number 

A destination port number is used to indicate the receiver‟s port. If the source host is a 

server the port number is likely to be used by common protocols that are in the range of 0 to 

1023 (Sosinsky, 2009). If the source host is a client, the port number tends to be an 

ephemeral port number. In addition, this field is required in both IPv4 and IPv6 (Sosinsky, 

2009). 

 

Length  

This field specifies the length in octets of the user datagram including the UDP data and 

UDP header. The practical limit for the data length in IP version 4 is 65,507 Bytes (Sosinsky, 

2009). In IP version 6, however, it is possible to have UDP packets of a size greater than this 

number. In addition, if the UDP data and UDP header is greater than 65,535 Bytes, the 

length field is set to zero (Sosinsky, 2009). 

  

Checksum  

This field is used to check errors in both the header and data. If no checksum is generated, 

the value is set to all zeros. The checksum is useful when the datagram needs to pass over 

unreliable links. In addition, this field is optional when IP version 4 is used, but it is required 

for IP version 6 (Loshin, 2003). 

 

3.6.1.2 Comparison of TCP and UDP 

TCP stands for Transmission Control Protocol. It is one of the members of the Internet 

protocol suite that provides connection-oriented, end-to-end, and reliable inter-process 

communication between hosts (Loshin, 2003). The following list describes some of the 

advantages of TCP: 
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 Reliable: TCP is designed to be resilient even when data received is damaged, out 

of order, or it receives data more than one. In the case of multiple time-outs, the 

connection is dropped, or if data get lost during transmission, the server will request 

the lost part again.  

 Ordered: Unlike UDP that imposes a structure on their data, TCP utilizes a “byte 

stream service” which allows data to be delivered in order. For example, if two data 

segments are sent in sequence, the first data segment will reach the destination first. 

If data segments arrive in the wrong order, it uses a buffer to wait until all data are 

properly delivered.     

 Heavyweight: TCP is a reliable protocol, which uses three packets to set up a 

socket connection before data are transmitted (known as a three-way handshake). 

The steps involved in a three-way handshake are: synchronize, synchronize – 

acknowledge, and acknowledge.  

 Streaming: TCP is a stream-oriented protocol, which allows data to be read in the 

form of a byte stream. TCP uses a reliable stream known as a “byte stream service” 

to deliver data to the destination, and it ensures that all bytes received will be 

identical and in the correct order (Loshin, 2003).    

 
In terms of UDP, it is a connectionless protocol, which does not require a dedicated end-to-

end connection. Communication is achieved by sending data from the source to the 

destination regardless of the state of the receiver. Nevertheless, the main advantage of this 

protocol is that it is suitable for real-time applications such as video conferencing, VoIP, and 

online games.  

UDP is also suitable for applications in which loss of the packet is not important. For 

applications that need a high degree of reliability, such as mission-critical applications, a 

protocol such as TCP may be considered. UDP-based applications do not normally have 

good congestion avoidance and control mechanisms. In addition, these applications 

frequently give an inelastic bandwidth load which can consume the available bandwidth on 

the network, especially on the Internet (Rahman, Saha, & Hasan, 2012). The following list 

explains the features of UDP: 

 Unreliable: There is no mechanism of acknowledgement, retransmission, and time-

out. When data are sent, it cannot be checked whether it will reach its destination, or 

whether data was lost during the process.   

 Not ordered: If two data segments are sent to the same destination in sequence, the 

order in which they arrive can be different. 
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 Datagrams: UDP provides no congestion control mechanisms. This protocol allows 

applications to send UDP datagrams at the same rate of the link interface, which is 

normally much higher than the available path capacity. As a result, it can cause 

congestion collapse at choke points in the network.     

 Lightweight: UDP was designed as a “lightweight” protocol. It does not have the 

ability to track connections between hosts, and it does not allow data to be delivered 

in order. Table 3.2 summarizes the attributes of TCP and UDP: 

Attribute TCP UDP 

Reliability Reliable Unreliable 

Connection Management Connection-oriented Connectionless 

Transmission Byte-oriented Message-oriented 

Fault Tolerance No No 

Congestion Control Yes No 

Flow Control Yes No 

Security Yes Yes 

Data Delivery Strictly Ordered Unordered 

                                                   Table 3.2: Comparison Between TCP and UDP 

 

3.6.2 Internet Control Message Protocol 

This section describes the Internet Control Message Protocol (ICMP) which is the protocol 

used during a UDP flood attack process. Therefore, an understanding of the attributes of this 

protocol is required. ICMP is part of the Internet protocol suite that provides feedback and 

error messages during network operations. These messages help the network 

administrators to analyze the current state of the network as well as diagnosing network 

connectivity problems (Bruce, 2011). The following section discusses the ICMP destination 

unreachable, which is the type of ICMP message used during a UDP flood attack.   

 

3.6.2.1 ICMP Destination Unreachable  

Destination unreachable (Type 3) is generated by the host to inform the client that the 

destination is unknown. For example, when the router is missing the information that allows 

a packet to be forwarded, the source host will receive the ICMP message Type 3 

(destination unreachable). This is a common occurrence when the router does not have the 

destination address in a routing table. There are several ICMP codes for destination 

unreachable but the most common type during a UDP flood attack is code three, which is a 

destination port unreachable message (Bruce, 2011). During a UDP flood attack, when the 
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attacker sends UDP packets to the destination ports on the victim computer, if one of these 

ports is closed, the victim computer will respond with ICMP destination unreachable 

messages back to the attacker computer (Singh & Juneja, 2010).  

 

3.7 Chapter Summary   

This chapter described the details of UDP flood attacks, which is the type of DDoS attack 

used in this study. This attack occurs when an attacker crafts numerous UDP packets to 

random destination ports on a victim computer, and the victim, on receipt of UDP packets, 

has to respond with ICMP packets if one of these ports is closed. This chapter also 

explained the technique called IP spoofing, which is the technique used by the attacker to 

hide his/her IP address, and to make the attack packets appear to come from different 

source locations. The method of UDP flood attacks using Zombies was also discussed, 

which is a technique used by an attacker to multiply the attacks. This chapter also described 

the functionality of UDP flood attack tools, which are divided into two categories: agent-

based and IRC-based. The last section covered a description of the two protocols involved in 

UDP flood attacks, namely, UDP and ICMP.  

The next chapter covers the methodologies and techniques employed in this study. 
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CHAPTER 4 

METHODOLOGY 

 

This chapter covers the methodologies and techniques employed in this study. Section 4.1 

describes the hypotheses used in this research. Section 4.2 explains the three broad types 

of methodologies, then focuses on the quantitative approach, which is the methodology used 

in this study. This section also covers the evaluation methods that can be used to evaluate 

the impact of DDoS attacks on a network. Section 4.3 covers two types of data collection 

processes, the literature review process, and the experimental data gathering process. A 

brief discussion in regard to the analysis techniques that were used to carry out this study is 

also provided.  

 

4.1 Research Hypothesis 

Hypothesis is the process which gives a clear scope of the elements presented in the 

research, and it was used as the key driver that forms the experiments in order to produce 

the result of this study. Following are the research hypotheses that used to manage the 

research activities and tasks:  

 It is expected that the performance of the webserver will reduce during the UDP flood 

attack. 

 It is expected that CPU, RAM, and Disk utilizations on Windows Server 2012 and 

Linux Ubuntu 13 will increase during the UDP flood attack. 

 It is expected that different UDP packet sizes (attack packet) will increase the packet 

loss and the delay value.  

 It is expected that different packet rates (attack packet) will increase the packet loss 

and the delay value. 

 

4.2 Method Used for Study  

There are three broad types of methodologies used to manage a research study: qualitative 

research, quantitative research, and mixed method research (Case & Light, 2011). 

According to Daniel Muijs, quantitative research involves gathering numerical data and using 

mathematically-based methods to explain phenomena or research questions (Muijs, 2011). 

In addition, there are two main types of quantitative research designs: 
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experimental designs and non-experimental designs. The former involves the test and 

numerical statistics, while the latter includes the survey-based information (Charvat, 2003).  

The main methodology used in this study was based on the quantitative approach in which 

all data used in the analysis process were from the results of the experiment. There were 

three main processes used to evaluate the impact of a UDP flood attack on the network. The 

first process was to identify the performance of the network before the UDP flood attack. The 

second process was to identify the performance of the network during the attack. The final 

process was to evaluate the performance of the network after using DDoS defenses. The 

details of the evaluation process will be explained in Section 4.3.2.2.  

 

4.2.1 DDoS Attack Evaluation Methods  

A DDoS attack evaluation method is the methodology used to study the impact of a DDoS 

attack on a computer network. The most common DDoS evaluation methods are broken into 

three categories: Simulation, Testbed, and Theory (Mirkovic, Sonia, Reiher, & Thomas, 

2009). The following section describes the advantages and disadvantages of each method. 

In addition, Testbed was an evaluation method used in this study. 

 

4.2.1.1 Simulation 

Simulation is an attempt to model a hypothetical situation on a computer so that it can be 

studied to see how the system works. This method is very popular for analyzing network 

performance questions. Most simulation software provides simple router models but some of 

them (such as OPNET) provide several models of switches, routers, and servers based on 

vendor specifications (Mirkovic, Sonia, et al., 2009). Nevertheless, one of the disadvantages 

of a simulation method is that it may unintentionally increase CPU and RAM utilization of the 

testing computer.  

 

4.2.1.2 Testbed   

Testbed is one of the evaluation methods used in this study. Testbed gives the most realistic 

environment, which allows researchers to set up DDoS experiments using real traffic and 

attack methods. Testbed gives access to a desired number of computers, located at a 

central facility and isolated from the Internet, and it also offers realistic parameters such as 

delays, packet loss, and user throughput (Mirkovic, Sonia, et al., 2009). Testbed provides a 

more realistic evaluation environment than simulation for many reasons, including: 
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 Real operating system, applications, and hardware are used in testing. 

 DDoS and legitimate traffic can be generated in several ways. 

 Many router choices exist in Testbed, including Cisco and Juniper routers which 

allow realistic forwarding behavior. 

 
4.2.1.3 Theory 

Theory method is suitable for answering questions about situations that can be accurately 

represented by existing models. In the DDoS experiment, theory may be useful to evaluate 

the robustness of a given defense to cheating or a direct attack. Both require some 

guesswork on the attacker‟s part, the success of which can be evaluated via theory.  

This approach is also useful in answering specific questions about a defence‟s scalability, 

cost and delay. However, these attributes depend on the defence‟s design, and whether or 

not parts of it can be accurately represented by simple models. Generally, the theory 

approach is not suitable for effectiveness evaluation (Mirkovic, Sonia, et al., 2009).          

 

4.3 Data Collection Process  

This section describes the data collection process, which was used to obtain the data for this 

study. There were two types of data collection methods in this research: the literature review 

and an experimental data gathering process. The former provides both the knowledge and 

information needed for the research. Searching for the literature was mainly based on 

journals, conference papers, books and other credible sources from the Internet. In terms of 

the experimental data gathering process, it was carried out using multiple tests in the 

computer laboratory.    

 

4.3.1 Literature Review Process 

The literature review is the initial process that enhances the researcher intellectually while 

reading and analyzing other‟s relevant works. It also provides the knowledge base, 

background, and information needed for this study. In this research, all literature was 

gathered from different credible resources such as academic databases, academic peer-

reviewed journals, library references, and appropriate credible association websites. Table                 

4.1 is an example of the credible resources, where information for this research was 

retrieved. 
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Resources From 

Academic Database IEEEXplore, ACM, and EBSCO HOST  

Books Unitec library, and Google Book 

Web Search Engine Google scholar  

                                                             Table 4.1: Credible Resources  

 

The resources mentioned in Table 4.1 led to research papers relevant to the study, as they 

are well-known and credible for information technology-based research. After the literature is 

reviewed and critically analyzed, it leads to the next process which is information gathering 

from the testbed. The following sections describe the experimental data gathering process, 

which explains how the data were collected and analyzed.    

 

4.3.2 Experimental Data Gathering Process   

The main resource for data gathering for this research was the collection of data from the 

tests. To achieve this, a network was set up in the computer laboratory, and numerous tests 

were run in order to get accurate results. In this process, there were five different types of 

data used to measure the impact of a UDP flood attack on the network. They were CPU 

utilization, round-trip time, packet loss, jitter, and user throughputs, all of which were 

collected by using appropriate tools. Table 4.2 shows the DDoS impact metrics and the tools 

used in the data gathering process. In addition, the process of collecting this data will be 

explained in the next section. 

DDoS Impact Metrics Tools Used For Collecting Data 

CPU utilization Microsoft Resource Monitor  

Round-trip time TCPing 

Packet loss  Iperf 

Jitter Iperf 

User throughput  Iperf  

                               Table 4.2: DDoS Impact Metrics and Tools Used For Collecting Data 

 

4.3.2.1 DDoS Impact Metrics 

This section describes the performance metrics that were used in the analysis process 

(Chapter 6 and Chapter 7). The following is a list of the five common parameters that have 

been used by many researchers to evaluate the impact of DDoS attacks on networks 

(Mirkovic, Sonia, et al., 2009).            
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CPU Utilization  

The primary tool used to collect the CPU utilization was Microsoft Resource Monitor. In this 

study, the CPU usage was collected in three phases: before the attack, during the attack, 

and after using solutions. In terms of the CPU utilization before the attack, the CPU usage 

was recorded on the victim computer for 5 minutes (30 runs) without any other running 

process. Regarding CPU utilization after the attack, CPU monitoring software was run before 

launching the UDP flood attack. By doing this, the impact of the attack can be seen at the 

beginning. Figure 4.2 illustrates the CPU utilization output from Microsoft Resource Monitor.         

                        Figure 4.1: Example of CPU Utilization Output from Microsoft Resource Monitor 

 

Round-trip Time 

The primary tool used to collect the RTT was TCPing ("Ping over a TCP Connection", 2013). 

It was done in order to analyze the delay between a legitimate computer and the webserver. 

RTT was collected in three phases: before the attack, during the attack, and after using the 

solutions. In each scenario, it was run 30 times for 5 minutes. In terms of the RTT before the 

attack, the RTT was collected during the normal network operation and without any other 

running process. Regarding the RTT after the attack, the RTT was collected during the UDP 

flood attack. Figure 4.3 illustrates an example of round-trip time output (1 run) using TCPing. 

The details of this tool are also explained in Section 5.3.3.   
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                   Figure 4.2: Example of Round- trip Time Output from TCPing 

                   

Packet Loss 

The primary tool used to collect packet loss values was Iperf (Openmaniak, 2009). It was 

done in order to analyze the relationship between the attack packet size and legitimate 

packet loss value. The sizes of attack packets were 64, 128, 256, 512, 1024, and 1280 

Bytes per packet. These sizes include the maximum and minimum frame sizes permitted by 

the Ethernet standard (Bradner & McQuaid, 1999). Packet loss value was collected in three 

phases: before the attack, during the attack, and after using the solutions. For each 

scenario, it was run 30 times to calculate an average and standard deviation. Figure 4.4 

illustrates an example of packet loss values using Iperf. The detail of this tool is also 

explained in Section 5.3.1.   
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                                    Figure 4.3: Example of Packet Loss Output from Iperf 

Jitter 

The primary tool used to collect jitter values was Iperf. The test was done in order to analyze 

the legitimate delay variation when using the different attack packet sizes. The sizes of 

attack packets were 64, 128, 256, 512, 1024, and 1280 Bytes per packet, each of which was 

run for 30 times to calculate the maximal, minimum and average values. Figure 4.5 

illustrates an example of jitter using Iperf.  

 

                          
                                      Figure 4.4: Example of Jitter Output from Iperf 

Packet Loss 

Jitter 
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User Throughput  

The primary tool used to collect the throughput values was Iperf. It was used in order to 

analyze the number of user throughputs between the client and server. There were two 

types of user throughputs in this study, namely, TCP and UDP. Both of them were collected 

in three phases: before the attack, during the attack, and after using the solutions. For each 

scenario, it was run 30 times to calculate an average and standard deviation. Two 

computers needed to have Iperf installed; one was the victim computer, and the other the 

monitoring computer (legitimate computer). Figure 4.6 illustrates an example of UDP 

throughputs using Iperf.  

            
                                    Figure 4.5: Example of UDP Throughputs Output from Iperf 

 

4.3.2.2 UDP Flood Attack Evaluation Process   

There were 3 main processes were used to evaluate the impact of a UDP flood attack on the 

network. The first process was to identify the performance of the network before a UDP flood 

attack. The second process was to identify the performance of the network during the attack 

and, the final process was to evaluate the performance of the network after using the DDoS 

defenses. The following sections explain the steps involved in each process. 

    

 

                             

UDP Throughput 
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Process of Generating Legitimate Traffic   

In order to identify the performance of the network before a UDP flood attack, legitimate 

traffic was required. To achieve this, software called Webserver Stress Tool was used 

(Webstress, 2014). This software can simulate legitimate users who want to access the 

webserver, and therefore we can identify legitimate traffic. In this study, the number of 

legitimate users was 10 users, and the test was run 30 times using Window Server 2012 and 

Linux Ubuntu 13. This generated traffic at approximately 4.4 packets per second. During this 

time, CPU utilization, delay, jitter, packet loss, and user throughput values were collected, 

and used to compare with the same parameters during the attack. In addition, the detail of 

Webserver Stress Tool is explained in Section 5.3.4.     

  

Process of Generating Attack Traffic     

The primary tool used to generate the attack traffic was Hping3 (Hping, 2014). In this study, 

an attack rate of 13000 packets per second and a packet size of 512 Bytes per packet were 

used to attack the targeted network. This generated attack traffic at approximately 50.7 

Mbps. These were the maximum values that the victim computer could withstand, and we 

would not have been able to measure traffic (e.g., RTT) if the packet rate and packet size 

had been higher than those values. During the UDP flood attack, CPU utilization, delay, 

packet loss, and user throughput values were collected, and used to compare with legitimate 

traffic. In addition, the detail of Hping3 is also explained in Section 5.3.5.     

 

Process of Evaluating Defenses      

Six defense mechanisms were used against the UDP flood attack, namely, Access Control 

Lists, Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and the Software 

Firewall. After implementing each solution, a UDP flood attack was launched again. The 

efficiency of defense was evaluated by comparing the number of CPU utilization, delay, jitter, 

packet loss, and user throughput values before and after using the solutions. In addition, the 

detail of defense mechanisms and the network set up will be explained in Section 5.2. 
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4.4 Chapter Summary 

This chapter covered research hypotheses, methodology of study, and data collection 

process. The pre-defined hypotheses showed the scope or the boundary of this research, 

while a quantitative research method was selected as the main methodology and used to 

manage the research from beginning to end. A testbed was set up to gather quantitative 

data. This chapter also detailed the most common DDoS evaluation methods, which are 

simulation, testbed, and theory. In addition, the testbed method was selected as an 

evaluation method since it provided a more realistic evaluation environment compared to the 

simulation and theory methods. The end of this chapter presented the procedures of data 

collection, and the steps involved in the process of both the literature review, and the 

experiment for this research, with examples of graphs also presented.  

The next chapter covers the testbed set-up for a UDP flood attack and defenses.  
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CHAPTER 5 

EXPERIMENTAL DESIGN 

This chapter describes the experimental network design used in this research to obtain the 

results. Section 5.1 covers the experimental set-up of a UDP flood attack, including the 

hardware and software specifications. Section 5.2 covers the experimental set-up of 

defenses, which are: Access Control Lists, Threshold Limit, Hybrid Defense, IP Verify, 

Network Load Balancing, and Software Firewall. Section 5.3 presents the five main network 

measurement tools used in this research. 

 

5.1 Experimental Set-up of a UDP Flood Attack 

Router

   Attacker

Server (Victim)

Switch

Monitoring PC

Windows 8
Computer Name: PC1
IP: 192.168.1.4/24
Gateway: 192.168.1.1

BackTrack5 R3
Computer Name: ATK1
IP: 192.168.1.2/24
Gateway: 192.168.1.1

BackTrack5 R3
Computer Name: ATK2
IP: 192.168.1.3/24
Gateway: 192.168.1.1

Windows Server 2012
Computer Name: SER1
IP: 192.168.2.2/24
Gateway: 192.168.2.1
Role: Webserver

     

E0 192.168.1.1 E1 192.168.2.1

UDP ATTACK 
LAB SETUP

Switch

Attacker

                                           Figure 5.1: UDP Flood Attack Testbed Set-up 

Figure 5.1 illustrates the experimental network designed for a UDP flood attack. The 

proposed network testbed was designated to simulate a real live implementation of a DDoS 

attack. To achieve this, the network was set up through a direct connection using a standard 
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category 5e cabling between workstations. The router was used to separate the two 

networks, and to monitor incoming and outgoing traffic between the networks. There were 

four types of workstations in the testbed: Two workstations would act as attackers, one 

would act as a victim, and another was used as a monitoring machine. The purpose of this 

network design is to maintain consistency with previous work and similar research carried 

out in the past (Subramani, 2011). 

The workstations where the attackers perform had BackTrack 5 R3 installed. It was a Linux-

based penetration testing arsenal that provided a comprehensive and large collection of 

security-related tools including DDoS attack tools (Backtrack, 2013). The victim machine had 

Windows Server 2012 installed with the latest version of Microsoft Webserver (IIS8). The 

monitoring PC, in which Windows 8 was installed, was where the different varieties of 

monitoring tools were installed to gather data and perform the network testing analysis. 

Software installed on the monitoring machine was TCPing, Iperf, Wireshark, and, Webserver 

Stress Tool. 

DDoS is comprised of multiple computers that take part to flood a targeted machine. To 

achieve this, two attack machines were used. One machine would launch UDP flood attack 

using a valid IP address (the original attacker‟s IP address), and the other machine, which 

was a Zombie machine, would attack the victim with massive spoofed IP addresses (random 

IP addresses).  

In this study, an attack rate of 13000 packets per second and a packet size of 512 Bytes per 

packet were used to attack the targeted network. This generated the attack traffic at 

approximately 50.7 Mbps. These were the maximum values the server could withstand, and 

we would not have been able to measure traffic (e.g., RTT) if the attack packet rate and 

packet size had been higher than these values. During the UDP flood attack, CPU utilization, 

delay, jitter, packet loss, and user throughput values were collected, and used to compare 

with legitimate traffic. The following command was executed from a Linux command prompt 

on the attacker machines to craft the UDP packets, and send them to the victim machine:  

 Hping3 - -rand-source -i u13000  -UDP -p ++5000 -d 512  192.168.2.2  

According to the command, “rand-source” was a command for crafting random source IP 

addresses. This command can be changed to the original attacker‟s IP address by typing 

his/her IP address instead. “i u 13000” was a command for sending attack packets at 13,000 

packets per second. “UDP” was a command for crafting a UDP packet. “P ++5000” was a 

command for sending the UDP packets to the destination ports number starting from 5,000 
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and increases the number every packet. “D 512” was a command for using an attack packet 

size of 512 Bytes per packet. “192.168.2.2” was an IP address of a targeted computer. The 

details of the UDP flood attack evaluation process was explained in Section 4.3.2.2.     

 

5.1.1 Hardware and Software Specification  

5.1.1.1 Hardware  

In order to be consistent and produce accurate data from this study, the hardware used in all 

of the experiments was kept identical. The hardware benchmark was comprised of an Intel® 

Core™ i5 2.80 GHz processor with 8.00 GB RAM for the efficient operation of operating 

systems; Cisco router 2811 and Cisco switch SG 200 were chosen as the network 

connection devices. The router was also used for defenses against the attack. Table 5.1 

outlines the type and specifications of the hardware involved.    

 

Hardware Specifications 

 

 

 

PC 

CPU Intel® Core™ i5 2.80 GHz  

RAM 8.00 GB 

Hard Disk Western Digital Caviar SE 160 GB 

LAN Card Intel® PRO/1000 GT Adapter 

Motherboard Lenovo  

Motherboard Chipset Intel Q965 Rev. 1 

 
Network Connect 

Device 

Cable CAT5e 

Switch Cisco SG 200 

Router Cisco 2811 

                                                        Table 5.1: Hardware Specifications    

 

5.1.1.2 Software 

In terms of software specification, four operating systems were involved in this study; two of 

them were Microsoft operating systems and the other two were Linux open source operating 

systems. Table 5.2 describes the operating systems, roles, and software installed on the 

system. In addition, the details of software are also explained in Section 5.3.  
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Operating System Role Software installed 

Windows Server 2012 Victim Wireshark, Iperf 

Windows 8 Monitoring machine TCPing, Wireshark, Iperf,  

Webserver Stress Tool 

Linux Ubuntu 13 Victim Wireshark, Iperf 

Linux Backtrack R3 Attacker machine Hping3 

                                                          Table 5.2: Software Specifications    

 

5.2 Experimental Set-up of Defenses  

This section covers the details of the experimental set-up and configuration of defenses. 

There were six solutions used against the UDP flood attack in this study. They were Access 

Control Lists (Section 5.2.1), Threshold Limit (Section 5.2.2), Hybrid Defense (Section 5.2.3), 

IP Verify (Section 5.2.4), Network Load Balancing (Section 5.2.5), and Software Firewall 

(Section 5.2.6).  

 

5.2.1 Access Control Lists  

Access Control Lists (ACLs) is a network filter utilized by routers to permit and restrict data 

flows into and out of network interfaces. When an ACL is configured on an interface, the 

router analyses the data passing through the interface, and compares them to the criteria 

described in the ACL table. The router can either permit the data to flow or drop it (Cisco, 

2013d). 

This study aims at applying ACLs on the victim router in order to prevent a specific set of IP 

addresses. An example of these IP addresses is the private IP addresses. These IP 

addresses are usually not routable on the Internet, therefore, if traffic comes in with these IP 

addresses from the public Internet, it must be fraudulent traffic. Figure 5.2 shows the 

experimental set-up for ACLs defense. 
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Router

    Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

     

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Block: All Private IP Addresses

                                                 Figure 5.2: Access Control Lists Set-up 

According to Figure 5.2, in order to prevent a UDP flood attack on the network, the first step 

is to block all IP addresses that pose a risk (David, 2007). The example of these IP address 

is private IP addresses, and other types of shared/special IP addresses. These IP addresses 

are usually not routable on the Internet, and the attacker can use one of these IP addresses 

to hide the true source of the attack (IP spoofing). Table 5.2 is a list of IP addresses that 

need to be blocked:     

Risky IP Address  Reason 

10.10.0.0 Private IP Address Class A 

172.16.0.0 Private IP Address Class B 

192.168.0.0 Private IP Address Class C 

224.0.0.0 Multicast Address 

127.0.0.0 Loop Back Address 

169.254.0.0 Automatic Private Internet Protocol Addressing  

                                                      Table 5.2: List of Risky IP Addresses  

All of IP addresses showing in Table 5.2 are either private IP addresses that cannot be used 

on the Internet or are used for other purposes. For example, “IP 169.254.0.0” is reserved for 

client computers when they cannot connect to a DHCP server. Therefore, if traffic comes in 

with this IP address from the public Internet, it must be malicious traffic. In addition, it can be 
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noted that this defense cannot block attacking traffic if the attacker uses IP addresses that 

are not on the black lists, e.g., spoofed public IP addresses.     

In this thesis, the following ACL rules were used to stop the UDP flood attack. These rules 

were entered into the router‟s command line interface using the router interface (f0/0), which 

was the router interface of the victim network.  

 Config t  

 IP access-list ext ingress-antispoof 

 Deny IP 224.0.0.0 31.255.255.255 any 

 Deny IP 169.254.0.0 0.0.255.255 any 

 Deny IP 172.16.0.0 0.15.255.255 any 

 Deny IP 127.0.0.0 0.255.255.255 any 

 Deny IP 10.0.0.0 0.255.255.255 any 

 Permit IP any any 

 Int f0/0 

 IP access-group ingress-antispoof IN   

The first command “Config t” was used to execute configuration commands from the 

terminal. The next command “Deny IP 224.0.0.0 31.255.255.255 any” was a set of IP 

addresses that were blocked. The next command “Int f0/0” was used for specifying the 

interface of the network that was to be protected from the attack (victim‟s network). Finally, 

when the command “IP access-group ingress-antispoof IN” was entered, the router would 

block the IP addresses defined. 

 

5.2.2 Threshold Limit  

Unlike Access Control Lists, the Threshold Limit technique does not aim to block any traffic 

from the outside of the network (Cisco, 2013b), instead it sets up a rate limit of traffic that the 

server can withstand. The advantage of this approach is that it allows the network 

administrator to decide how much traffic should be let inside the network. This traffic rate 

also depends on the size of the organization, the server‟s processing capacity, and the traffic 

it would be able to withstand. Figure 5.3 shows the experimental set-up for the Threshold 

Limit technique. 
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Router

    Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

     

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Limit Traffic Rate at
 10000 Packets per second

                                                         Figure 5.3: Threshold Limit Set-up 

In this study, the following command was used for limiting traffic from the attacking network 

up to the threshold. These commands were entered into the router‟s command line interface 

using the router interface (f0/0), which was the router interface of the victim network.    

 Config t 

 Int f0/0 

 Rate-limit input 10000 10000 10000 conform-action transmit exceed-action drop  

 Ctrl + C 

 Write  

The first command “Config t” was used to execute configuration commands from the 

terminal. On the second line, “Int f0/0” was used to define the interface where the incoming 

traffic from the outside of the network should be policed. The third line was used to define 

the amount of traffic that could pass through the network. In addition, the first value of 10000 

was defined as Bytes per second, which was the amount of traffic that the server would be 

able to serve for the clients connected to it (Subramani, 2011). The last value of 10000 was 

defined as the burst maximum, which was used to maintain a steady flow of packets and 

handle the traffic fluctuations. After applying this command, the incoming traffic that did not 

exceed these conditions was transmitted, whereas the rest of it was dropped. Figure 5.4 

illustrates the traffic rate after using the Threshold Limit technique.  
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                      Figure 5.4: Output from Wireshark After Using Threshold Limit Technique   

According to Figure 5.5 below, this defense allows all packets to enter the network but limits 

the traffic rate up to the threshold (up to 10000 packets per second). One of the advantages 

of this defense is that it has the ability to maintain a steady flow of packets, and the traffic 

fluctuations. This technique is also suitable for the originations that do not want to block 

private IP addresses with some reasons. Moreover, since it does not block private IP 

addresses, it can be implemented inside the network to protect servers from DDoS attacks 

launched by malicious insiders (Subramani, 2011). 
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                                                     Figure 5.5: Threshold Limit Defense Strategy 
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5.2.3 Hybrid Defense  

Hybrid Defense was proposed by Subramani (2011) to improve existing DDoS solutions: 

ACLs and Threshold Limit. Hybrid Defense is the enhanced solution that combines the main 

advantages of both Access Control Lists and Threshold Limit techniques to govern the traffic 

flow better. This defense gives the ability to a victim‟s router to drop the malicious packets 

and control the incoming traffic rate up to the threshold. Figure 5.6 shows the experimental 

set-up for Hybrid Defense. 

Router

    Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

     

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Block Private IP Addresses
and Limit Traffic Rate

                                              Figure 5.6: Hybrid Defense Set-up 

In this thesis, the following command was used in order to block and limit traffic from the 

attacking network. These commands were entered into the router‟s command line interface 

using the router interface (f0/0), which was the router interface of the victim network.   

 Config t  

 IP access-list ext hybrid-defense  

 Deny IP 224.0.0.0 31.255.255.255 any  

 Deny IP 169.254.0.0 0.0.255.255 any 

 Deny IP 172.16.0.0 0.15.255.255 any 

 Deny IP 127.0.0.0 0.255.255.255 any 

 Deny IP 10.0.0.0 0.255.255.255 any 

 Permit IP any any 

 Exit 
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 Int f0/0 

 Rate-limit input 10000 10000 10000 conform-action transmit exceed-action drop  

 IP access-group hybrid-defense IN   

The first command “Config t” was used to execute configuration commands from the 

terminal. Since private IP addresses and special IP addresses cannot be used on the 

Internet, all of the IP addresses described on the third to seventh lines were blocked. On the 

eleventh command, it allowed the rest of the IP addresses to pass through the network, but it 

still limited the traffic rate up to 10000 packets per second. These commands were applied 

on the inference f0/0 which was the router interface of the victim network. The Hybrid 

Defense strategy is explained in Figure 5.7:   
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                                                    Figure 5.7: Hybrid Defense Strategy 

 

According to Figure 5.7, after implementing Hybrid Defense on the victim‟s router, the result 

from Wireshark installed on the server (victim computer) showed that none of private 

spoofed IP address could gain access to the webserver. This is because the router had 

dropped all IP addresses that fell into the black-lists. Another advantage of this defense is 

that it could also drop a traffic rate that was higher than the threshold (Subramani, 2011).  
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5.2.4 IP Verify  

IP Verify is a technique used in routers for the purpose of protecting a network from a DDoS 

attack or preventing infinity loops of packets in multicast routing. This security feature gives 

the ability to the router to verify the reachability of the source IP addresses before they can 

enter the network. If the source IP address is not valid, the packet is dropped (David, 2007). 

The IP Verify technique has two modes: strict mode, and loose mode. In terms of the strict 

mode, the packet must be received on the same interface that the router will use to send a 

return packet. One of the disadvantages of the strict mode is that it may drop legitimate 

traffic if the traffic is coming from different interfaces from those the router has decided on 

(Cisco, 2013c).   

For IP Verify in the loose mode, on the other hand, the source address must appear in the 

routing table. Each incoming source IP address needs to be tested against this forwarding 

table, and the packet is discarded if the source address in not reachable via any interface on 

the router (Cisco, 2013c). Since IP Verify in the strict mode can drop legitimate traffic, the 

unicast RPF loose mode was selected as a proposed defense. Figure 5.8 shows the 

experimental set-up for IP Verify: 
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                                                             Figure 5.8: IP Verify Set-up 
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In this thesis, the following commands were used for implementing the IP Verify loose mode 

on the router. These rules were entered into the router‟s command line interface using the 

router interface (f0/0), which was the router interface of the victim network:  

 Config t 

 IP cef 

 Int f0/0 

 IP verify unicast source reachable-via any    

The first command “Config t” was used to execute configuration commands from the 

terminal. On the next commands “IP cef” was a command for implementing IP Verify 

defense on the router. The command “Int f0/0” was used for specifying the interface of the 

network that needed to be protected from the attack. Finally, when the command “IP verify 

unicast source reachable-via any” was entered, the router would verify the reachability of the 

source IP address before it could enter the network. The IP Verify strategy is explained in 

Figure 5.9:   

                  

Router

Server 
(192.168.2.2)Attacker

1.

(1) Send IP Packets

Router

Server 
(192.168.2.2)Attacker

2.

(2) Router Looks Up to See If It has a Route 
in its Routing Table to Reply to Packets

Router

Server 
(192.168.2.2)Attacker

3.

(3.2) If they are seem to be 
invalid, Packets are Dropped  

(3.1) If So, It Forwards IP 
Packets to the Server

 

                                                           Figure 5.9: IP Verify Strategy 
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According to Figure 5.9, IP Verify takes the source IP address of a packet received from the 

Internet and looks up to see if the router has a route in its routing table to reply to that 

packet. If there is no route in the routing table for a response to return to the source IP, then 

someone likely has spoofed the packet, and the router drops the packet. However, the 

disadvantage of this defense is that it cannot prevent DDoS attacks based on a valid IP 

address (David, 2007). For example, if the attacker launches the attack by using his/her IP 

address as a source IP address, this defense will be useless, because this defense will 

determine that the IP address is a valid IP address.  

 

5.2.5 Network Load Balancing 

Network Load Balancing (NLB) is a Microsoft implementation of clustering and load 

balancing that is available in Microsoft Server 2012 (Microsoft, 2014). NLB is software 

based, which does not require proprietary hardware, and any industry standard compatible 

computer can be used. In terms of Linux operating system, BalanceNG was selected as a 

software IP load balancing solution (BalanceNG, 2014). Network Load Balancing has been 

used by many researchers such as Le, Boutaba and Shaer (2008) who used NLB to improve 

network performance during DDoS attacks.  

In this study, NLB was used to reduce the impact of a UDP flood attack on the network. 

When the attack took place, it balanced incoming traffic and a workload to an additional 

server using different paths and cables. It can be noted that the purpose of this solution is 

not to stop the attack but to share traffic to other paths of the network. As a result, the 

targeted server still has enough computing resources (e.g., CPU and network bandwidth) to 

provide service to its clients during the attack (Stephen & Ruby, 2004). Figure 5.10 shows 

the experimental set-up for the Network Load Balancing:   
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Router

IP: 192.168.2.3
 (Host Priority 2)

     

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

IP: 192.168.2.2
 (Host Priority 1)

     

IP Cluster 
 (192.168.2.9)

   Server
 

    Server 
    Attacker

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

Attacker

                                              Figure 5.10: Network Load Balancing Network Set-up   

As shown in Figure 5.10, in order to implement NLB, an additional server was added to the 

switch. Two servers were needed to configure an IP cluster, which was used as a “shared” 

IP address between the two servers. By using this IP address, when a client connected to 

the server, it automatically connected to the server that had the higher priority first. Similarly, 

when a large number of attack packets entered the network, NLB shared traffic to both 

servers equally (in this study the 50:50 rule was used). As a result, the targeted server still 

had enough computing resources to provide a service to clients during the attack. 

There are two NLB modes: unicast mode and multicast mode. In this study, the unicast 

mode was selected. According to the Cisco website, the multicast mode has an issue with 

Cisco routers when a client and a server are located in different subnets. This is because 

Cisco routers do not accept an ARP reply for a unicast IP address that contains a multicast 

MAC address (Cisco, 2013a). The following parameters were used in this study:  

 Cluster operation mode: Unicast 

 Port rage: 0 to 65535 

 Protocols: TCP and UDP 

 Filtering mode: Multiple host 

 Load weight: Equal 
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5.2.6 Anti-DDoS Firewall  

In this study, Anti-DDoS Guardian™ was selected as a software firewall. It is a high-

performance firewall designed for modern operating systems including Windows 8 and 

Windows Server 2012. Anti-DDoS Guardian™ can prevent UDP flood attack by creating IP 

backlists, limiting UDP bandwidth, UDP connection rate, and UDP packet rate (Beethink, 

2014). Figure 5.11 illustrates the experimental set-up for the software firewall:   

 

Router

    Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

     

E0 192.168.1.1 E1 192.168.2.1

Switch

Attacker

Install: 
Anti-DDoS Guardian™ 

                                           Figure 5.11: Software Firewall Network Set-up 

 

According to Figure 5.11, the software firewall was installed on the victim computer and run 

in the background as a Windows service. To get the highest performance possible against 

the attack, the following parameters were used. Note that, if the parameters were set lower 

than these values, legitimate packets might be dropped during the attack. 

 The maximum bandwidth allocated to each IP address is 50,000KBps  

 The maximum number of incoming UDP packets per second is 10,000 

 The maximum number of incoming ICMP packets per second is 10,000 

 The maximum number of concurrent client IP addresses is 1,500  
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                                        Figure 5.12: Example of Output from Anti-DDoS Guardian 

Figure 5.12 shows the software firewall blocked the public spoofed IP addresses. The result 

from Wireshark installed on the server (victim computer) also showed that none of the 

private spoofed IP addresses could gain access to the webserver because the software 

firewall had dropped the IP addresses that fell into the black-lists. However, the 

disadvantage of this approach is that it consumed computer resources (especially CPU 

utilization) at a greater rate than the other defenses because this defense needed to use the 

CPU of the server in the process of dropping bad traffic (Lad, Alghalbi, & Ahmed, 2013).  

 

5.3 Network Performance Measurements Tools 

There are varieties of performance tools available for measuring the performance of various 

networks. Selecting the right tool for the experiment is critical because different tools have 

different functionalities. The following list describes the selection criteria for the tools in this 

thesis: 

 The tool must support the Internet protocol version 4.  

 The tool must support both Windows and Linux based platforms.  

 The tool must have high reliability and have been used in other researches before. 

 The tool must be able to measure and display results including the required 

performance metrics.  

There were five possible candidates for this project, which are Iperf (Section 5.3.1), 

Wireshark (Section 5.3.2), TCPing (Section 5.3.3), Webserver Stress Tool (Section 5.3.4), 

and Hping3 (Section 5.3.5). In this section the analysis, review and discussion of these tools 

is presented.    

Public spoofed 

IP addresses are 

blocked 
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5.3.1 Iperf  

Iperf (Openmaniak, 2009) is open source software used for measuring the network 

bandwidth between a client and server. It also has the ability to evaluate the TCP and UDP 

throughputs, and measure delay, jitter, and packet loss of the targeted computer. Iperf is a 

command line interface and supports many operating systems including Windows, and 

Linux.  

In this research, Iperf was the primary tool used for measuring user throughputs, jitter, and 

packet loss. These metrics were collected in three states: before the attack, during the 

attack, and after using the solutions. To run Iperf, it needed to be installed on two computers, 

which were a victim computer and a monitoring computer. The former would act as an Iperf 

client, while the latter would act as the Iperf server. Figure 5.13 shows UDP throughput 

output from Iperf:   

  

             
                                     Figure 5.13: Example of UDP throughput Output from Iperf 
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5.3.2 Wireshark 

Wireshark is an open source packet analyzer which can be used for monitoring and 

analyzing protocols transmitted between the networks. Wireshark is graphical user interface 

software based, which is compatible with a variety of operating systems, including Windows, 

and Linux (Wireshark, 2014). Wireshark has many features including:  

 It supports over 750 networking protocols. 

 It can save captured files in a variety of formats. 

 Data display can be refined using a display filter. 

 It runs on over 20 platforms. 

 It includes a command line version called Tshark.   

 

In this study, the tool was used to monitor UDP packets sent from the attacker computer to 

the victim computer. To run the software, it needed to be installed on a victim computer. 

After installation, it required the user to choose the desired network interface card (NIC) that 

he/she wished to monitor the traffic from. Figure 5.14 illustrates an example of Wireshark 

output:  

 

                                                    Figure 5.14: Example of Wireshark Output 

 

5.3.3 TCPing 

TCPing is a small console application that operates similarly to “ping”. However, it works 

over a TCP port ("Ping over a TCP Connection", 2013). TCPing allows network 

administrators to check the round-trip time between the source and destination using TCP 

(not ICMP). In addition, the tool can be used for testing open ports on remote machines, or 

as an alternative to the standard “ping” in a case where ICMP packets are blocked or 

ignored.    



  Experimental Design 
_________________________________________________________________________  

64 
 

In this study, TCPing was a primary tool used to investigate the RTT between the server 

(victim) and legitimate computer. RTT was collected in three states: before the attack, during 

the attack, and after using solutions. To achieve this, the tool was installed on the monitoring 

computer and ran the following command using a command line interface. Figure 5.15 

shows an example of TCPing output: 

 tcping <the destination IP address> <port number>    

    

5.3.4 Webserver Stress Tool 

The Webserver Stress Tool is software for load and performance testing of a webserver, 

which is designed to simulate up to 1000 simultaneous users accessing a website 

(Webstress, 2014). By simulating the HTTP requests generated by simulated users, this 

software can be used to test webserver performance under normal and excessive loads (Bai 

& Yang, 2006). The Webserver Stress Tool complies with a number of different testing 

types, including:    

 Load Tests 

 Performance Tests 

 Ramp Tests     

 Stress Tests  

In this study, the Webserver Stress Tool was used to generate legitimate traffic. In order to 

identify the performance of the network before the UDP flood attack, legitimate traffic was 

required. To achieve this, the software was installed on the monitoring computer using 10 

users, and the test was run for 5 minutes, which generated traffic at 1,333 packets per 5 

minutes. Figure 5.16 shows an example of TCPing output: 

                                                            Figure 5.15: Example of TCPing Output 
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                                  Figure 5.16: Example of Webserver Stress Tool Output  

 

5.3.5 Hping3  

Hping3 is a command-line packet crafter used to generate IP packets containing TCP, UDP 

or ICMP payloads. It has the ability to generate different types of DDoS attacks including 

UDP flood attacks, TCP flood attacks and Smurf attacks. Hping3 is used by security 

professionals to test the vulnerability of the computer ports, and firewall rules on networks 

(Hping, 2014).  

In this study, Hping3 was the primary tool used for generating the UDP flood attack on the 

victim computer. To achieve this, the tool was installed on two attacker computers. One 

machine would launch UDP flood attack using a valid IP address (the original attacker‟s IP 

address), and the other machine, which was a Zombie machine, would attack the victim with 

massive spoofed IP addresses (random IP addresses).  

The UDP flood attack was generated for 5 minutes using an attack rate of 13,000 packets 

per second and the packet size was 512 Bytes per packet, which generated attack traffic at 

approximately 50.7 Mbps. Figure 5.17 shows a screenshot of the UDP flood attack using 

Hping3:  

 



  Experimental Design 
_________________________________________________________________________  

66 
 

 

                                                  Figure 5.17: Example of Hping3 Output  

 

5.4 Chapter Summary  

This chapter covered the experimental network set-up designs and network test-bed 

diagrams. There were four computers used in this study, two workstations were attacker 

computers, one was a victim computer, and the last one was a monitoring machine. This 

chapter also covered the experimental set-up and configuration of defenses. There were six 

solutions used against the UDP flood attack in this study. They were Access Control Lists, 

Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and Software Firewall. 

The last section presented the review and discussion of the five main network measurement 

tools used in this study. An example of screenshots was also presented.  

The next chapter is an evaluation of the UDP flood attack on a webserver using Windows 

Server 2012. 
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CHAPTER 6 

EVALUATION OF UDP FLOOD ATTACK ON 

WEBSERVER USING WINDOWS SERVER 2012 

This chapter covers the analysis of the results gathered from experiments using Windows 

Server 2012. Section 6.1 covers the impact of a UDP flood attack on throughputs based on 

TCP and UDP applications. Section 6.2 covers the impact of a UDP flood attack on the 

webserver, and evaluates round-trip time, packet loss, CPU utilization, and jitter. Section 6.3 

covers the analysis of six defense mechanisms, namely, Access Control Lists, Threshold 

Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software Firewall. 

Throughputs, round-trip time, packet loss, CPU utilization of the network with/without 

defenses are compared.   

 

6.1 Impact of UDP Flood Attack on Throughputs 

The section covers the impact of a UDP flood attack on throughputs before and during the 

attack. TCP and UDP were selected as the transmission protocols. The primary tools used in 

this study were Iperf and Hping3. The former was used to fill up the Ethernet link at 86.4 

Mbps while Hping3, which was the attack tool, was used to generate attack traffic at 156.2 

Mbps. The server was put on high traffic load to evaluate the impact on the bandwidth. To 

ensure high data accuracy, the test was repeated 30 times and result average and runs 

continued until standard deviation of results was below 0.07% of the average. The 

evaluation process and measurement tools used in this chapter were discussed in Section 

4.3.2.2 and Section 5.3.   

 

6.1.1 TCP Throughput  

This section presents the impact of a UDP flood attack on throughputs. TCP was selected as 

the transmission protocols, which was used for webserver traffic. The Y axis shows the 

number of throughputs in megabits per second, while the X axis shows the length of the 

experiment in seconds.    
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Figure 6.1: TCP Throughputs Before and During Attack on Windows Server 2012 

Scenario Time (Seconds) Throughput (Mbps) Standard Deviation 

Before Attack All 86.40 0.002 

 
During Attack 

2  32 0.045 

3 0.19 0.064 

After 4 Seconds 0.19-0.24 - 
 
Table 6.1: Average TCP Throughputs and Standard Deviation for 30 Runs Before and During Attack   

                 on Windows Server 2012 

 

Figure 6.1 illustrates the TCP throughput values before and during the attack. The result 

shows that the TCP throughput value before the attack was constant at 86 Mbps. This 

number was generated by Iperf. During the attack, however, this number significantly 

dropped from 86 Mbps to 0.19 Mbps within 3 seconds. The reason is that the attacker had 

sent a large number of UDP packets to the victim computer and eventually caused network 

congestion between the two nodes. It can be noted that the TCP throughput value was 

almost stable after 3 seconds, at around 0.19 Mbps to 0.24 Mbps.   

 

6.1.2 UDP Throughput  

This section presents the impact of a UDP flood attack on throughputs. UDP was selected 

as the transmission protocol, which was used for VoIP applications. The Y axis shows the 

number of throughputs in megabits per second, while the X axis shows the length of the 

experiment in seconds.    
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Scenario Time (Seconds) Throughput  Standard Deviation 

Before Attack All 86.50 0.002 

 
During Attack 

2  60.48 0.041 

3 28.52 0.012 

After 4 Seconds 38-39 - 
 
Table 6.2: Average UDP Throughputs and Standard Deviation for 30 Runs Before and During Attack on              

                  Windows Server 2012  

 

Figure 6.2 illustrates the UDP throughput values before and during the attack. The result 

shows that the UDP throughput value before the attack was similar to TCP (Figure 6.1), at 

around 86 Mbps. During the attack, however, this number dropped to 38.5 Mbps within 3 

seconds. After that, the UDP throughput value was constant at around 38 to 39 Mbps. It can 

be noted that the UDP throughput value during the attack was higher than TCP. The reason 

is that UDP is a connectionless protocol, which does not require a dedicated end-to-end 

connection. Also, it does not use a flow control; therefore, it can keep sending data even if 

traffic gets congested (Kolahi, Rico, & Hong, 2013). In terms of TCP, it uses a flow control 

protocol to limit the rate a sender transfer‟s data to guarantee reliable delivery (Loshin, 

2003). This could be the reason why the number of the UDP throughputs was higher than 

TCP during the attack.     
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                           Figure 6.2: UDP Throughputs Before and During Attack on Windows Server 2012 
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6.2 Impact of UDP Flood Attack on Webserver Using Windows Server 2012 

This section covers the impact of a UDP flood attack on the webserver using Windows 

Server 2012. The primary tools used in this study were Webserver Stress Tool and Hping3. 

The former was used to generate the connection request from users to the webserver 

assuming on average 10 users per second, while Hping3 was used to generate the attack 

traffic at 13000 packets per second (unless the attack packet rate and packet size are 

otherwise defined in the next sections). The monitoring PC was used to gather DDoS 

parameters when a legitimate or attack traffic was launched. To ensure high data accuracy, 

the test was repeated 30 times and data average and runs continued until the standard 

deviation of results was below 0.07% of the average. In addition, in some studies, the attack 

rate and attack packet sizes were increased to find out the effect of traffic load on different 

attack packet rates and attack packet sizes.  

 

6.2.1 Round-trip Time   

Round-trip time (RTT) is the time required for a packet to travel from a source to a 

destination and back again. The primary tool used in this study was TCPing, which was the 

tool used to gather the delay values of the webserver. The test was repeated 30 times using 

an attack rate of 13000, 12000, and 9000 packets per second, while the attack packet size 

was constant at 512 Bytes per packet. These tests generated attack traffic at 50.7 Mbps, 

46.8 Mbps, and 35.1 Mbps, respectively. This study was done in order to evaluate the 

impact of packet rate on delay. 

 

       Figure 6.3: Round-trip Time Before and During Attack on Webserver Using Windows Server 2012 
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Attack Packet Rate (pps) Average RTT(ms) Standard Deviation 

Before Attack 0.990ms 0.016 

9000 1.096ms 0.031 

12000 1.275ms 0.045 

13000 27.384ms 0.063 

  14000+ Connection out - 
 
Table 6.3: Average RTT and Standard Deviation for 30 Runs Before and During Attack on Webserver  

                     Using Windows Server 2012  

 

Figure 6.3 illustrates the average RTT for 30 runs between the client and the webserver 

during the UDP flood attack. The result shows that the RTT before the attack was 0.99ms. In 

terms of RTT during the attack, it can be observed that the RTT value was generally 

increased as the packet rate increased. By using an attack packet rate at 9000pps (35.1 

Mbps), the average RTT slightly increased from 0.99ms to 1.09ms. By using 12000pps (46.8 

Mbps), the average RTT went up to 1.27ms. Interestingly, the average RTT significantly 

increased from 0.99ms to 27.38ms if the attacker used a packet rate of 13000pps (50.7 

Mbps). In addition, the connection was cut off if the packet rate increased any further and it 

was impossible to measure RTT due to high traffic loads.          

 

6.2.2 Packet Loss  

In this study, packet loss refers to the amount of legitimate packets lost during the UDP flood 

attack. The primary tool used in this study was Iperf, which was the tool used to gather the 

packet loss values. The attack packet sizes used in this study were 64, 128, 256, 512, 1024, 

1280, and 1518 Bytes, while the attack packet rate was constant at 13000 packets per 

second. They generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7 Mbps, 

101.5 Mbps, 126.9 Mbps, and 150.5 Mbps, respectively. This study was done in order to 

evaluate the packet loss versus attack traffic load.   
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Figure 6.4: Size of Attack Packet VS Legitimate Packet Loss on Webserver Using Windows Server 2012 

Attack Packet Size (Bytes) Legitimate Packet Loss (%) Standard Deviation 

256 15.215 0.021 

512 56.170 0.042 

1024 61.215 0.023 

1280 65.466 0.047 

1518 75.200 0.031 
 
Table 6.4: Size of Attack Packet VS Legitimate Packet Loss and Standard Deviation for 30 Runs on  

                  Webserver Using Windows Server 2012 

 

Figure 6.4 illustrates the legitimate packet loss versus the attack packet size. On the whole, 

there was no packet loss on the frame sizes 64, and 128 (size of attack packet). By using 

256 Bytes (25.3 Mbps), the average of legitimate packet loss went up from 0% to 15.2%. 

The packet loss value significantly increased to 56.1% if the attack packet size was 512 

Bytes (50.7 Mbps). On the largest frame size, 1518 Bytes (150.5 Mbps), the average packet 

loss value went up to 75.2%. The results in this study showed that the packet loss was 

related to the size of the attack packet. This is because the larger packet size could 

consume more of the network bandwidth. In other words, the legitimate packets start to get 

dropped when the availability of bandwidth is insufficient.      
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6.2.3 CPU Utilization  

This section shows the impact of the CPU usage before and during the attack on the 

webserver using Windows Server 2012. The primary tool used in this study was Microsoft 

Resource Monitor, which was the tool used to monitor the CPU usage on the server.  

 

       Figure 6.5: CPU Utilization Before and During Attack on Webserver Using Windows Server 2012 

Scenario Time (Second) CPU Utilization (%) Standard Deviation 

Before Attack All 1-2 - 

 
During Attack 

2  9.36 0.150 

3 19.52 0.077 

4 21.28 0.080 

After 5 Seconds 19-24 - 
     
Table 6.5: Average CPU Utilization and Standard Deviation Measured 30 Times Before and During Attack    

                 on Webserver Using Windows Server 2012                

 

Figure 6.5 illustrates the CPU utilization before and during the attack on the webserver using 

Windows Server 2012. The result shows that the CPU usage before the attack was constant 

at 1 to 2%. During the attack, however, the CPU utilization went up at approximately 10% 

within 2 seconds and increased to 22% in 4 seconds. Afterwards, it fluctuated between 19% 

and 24%. In terms of the RAM utilization, the result shows that there was only a minor 

difference between RAM usage before and during the attack (the graph is not shown). The 

RAM utilization before the attack was constant at 8%, and went up to between 10% and 15% 

during the attack. In terms of hard disk utilization, there was no difference between the hard 

disk usage before and during the attack (the graph is not shown); the hard disk utilization 

was constant at 100 KB per second. This indicates that a UDP flood attack has more impact 

on the CPU than on the RAM and hard disk.   
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6.2.4 Jitter 

This section presents a comparison of legitimate jitter values during the UDP flood attack. 

The primary tool used in this study was Iperf, which was the tool used to gather the jitter 

values of the victim computer. The attack packet sizes used in this study were 64, 128, 256, 

512, 1024, 1280, and 1518 Bytes, while the attack packet rate was constant at 13000 

packets per second. These tests generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3 

Mbps, 50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and 150.5 Mbps, respectively. 

 

                        Figure 6.6: Jitter VS Packet Size on Webserver Using Windows Server 2012 

Attack Packet Size (Bytes) Jitter (ms) Standard Deviation 

Before Attack 0.663 0.031 

64 0.929 0.022 

128 1.047 0.059 

256 1.061 0.021 

512 10.476 0.047 

1024 22.162 0.023 

1280 31.656 0.067 

1518 41.130 0.074 
 
Table 6.6: Size of Attack Packet VS Jitter and Standard Deviation for 30 Runs on Webserver Using    

                  Windows Server 2012 

 

Figure 6.6 illustrates the average legitimate jitter value versus packet sizes (attack packet). 

On the whole, the result shows that the jitter value was increased as the attack packet size 

increased. Without the attack, the jitter value was 0.663ms. During attack, the jitter values 

slightly went up when using the attack packet sizes between 64 to 256 Bytes (6.3 Mbps, 

12.6 Mbps, and 25.3 Mbps).  
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The most noticeable feature of this graph is that the jitter value significantly increased when 

using attack packet sizes between 512 Bytes and 1518 Bytes (50.7 Mbps, 101.5 Mbps, 

126.9 Mbps, and 150.5 Mbps). By using 512 Bytes (50.7 Mbps), the average jitter value 

went up from 0.663ms to 10.476ms. The jitter value increased to 22.162ms if the attack 

packet size was 1024 Bytes (101.5 Mbps). On the largest frame size, 1518 Bytes (150.5 

Mbps), the average jitter value went up significantly to 41.13ms. High jitter values cause 

degradation in performance and lead to instability in services especially in real-time 

applications (Marti, Fuertes, Fohler, & Ramamritham, 2001). 

 

6.3 Comparisons of Defense Mechanisms on Windows Server 2012  

This section covers an analysis of defense mechanisms against a UDP flood attack on 

Windows Server 2012. There were six defenses used in this study, namely, Access Control 

Lists, Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS 

Software Firewall. The efficiency of each defense was evaluated by comparing throughputs, 

delay, packet loss, and CPU utilization values before and after using the defenses. To 

ensure high data accuracy, the test was repeated 30 times and result average and runs 

continued until standard deviation of results was below 0.07% of the average. The 

evaluation process and experimental set-up of defenses were discussed in Section 4.3.2.2 

and Section 5.2.  

 

6.3.1 TCP Throughput  

This section covers the impact of the UDP flood attack on throughputs after using defenses. 

TCP was selected as the transmission protocol, which was used for webserver traffic. The 

primary tools used in this study were Iperf and Hping3. The former was used to fill up the 

Ethernet link at 86.4 Mbps, while Hping3, which was the attack tool, was used to generate 

attack traffic at 156.2 Mbps. 
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                        Figure 6.7: TCP Throughputs After Using Defenses on Windows Server 2012 

Scenario Defense Throughput (Mbps) Standard Deviation 

Before Attack - 86.60 0.002 

 
 

During Attack 

No Defense  0.19 0.066 

Hybrid Method 86.40 0.012 

Threshold Limit 86.30 0.018 

ACLs 18.48 0.047 

IP Verify 15.67 0.081 

Load Balancing 0.28 0.071 

Software Firewall 0.251 0.068 
 
Table 6.7: Average TCP Throughputs and Standard Deviation For 30 Runs After Using Defenses on  

                 Windows Server 2012 

 

Figure 6.7 presents TCP throughput values after using six defenses. The result shows that 

the TCP throughput value before the attack was stable at around 86 to 86.6 Mbps. During 

the attack, however, this number significantly dropped to 0.19 Mbps. This is because the 

attacker sent huge numbers of attack packets which eventually caused bandwidth 

consumption. 

The most effective defenses in this study were the Hybrid Method and the Threshold Limit in 

which the number of throughput values before the attack and after using the solutions were 

almost the same, which was about 86.60 Mbps. ACLs came in third, which increased the 

TCP user throughput value from 0.19 Mbps to 18.48 Mbps. This number was similar to IP 

Verify, which increased TCP throughputs to 15.67 Mbps. The most ineffective defense 

mechanisms in this study were Network Load Balancing and the Software Firewall, which 

only increased TCP user throughput values from 0.19 Mbps to 0.288 Mbps, and 0.251 Mbps, 

respectively. The major disadvantage of Network Load Balancing is that it did not aim to stop 
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the attack, instead, it shared incoming traffic with an additional server. Therefore, the 

network bandwidth would be entirely consumed if the attacker kept sending the attack 

packets. In terms of the Software Firewall, it blocked attack traffic at the victim computer 

(unlike other defenses that dropped the attack packets at the router). As a result, the 

targeted computer was still affected by the attack packets.  

 

6.3.2 UDP Throughput 

This section covers the impact of the UDP flood attack on throughputs after using defenses. 

UDP was selected as the transmission protocol, which was used for VoIP traffic. The primary 

tools used in this study were Iperf and Hping3. The former was used to fill up the Ethernet 

link at 86.4 Mbps, while Hping3, which is the attack tool, generated the attack traffic at 156.2 

Mbps.  

 

Figure 6.8: UDP Throughputs After Using Defenses on Windows Server 2012  

 

Scenario Defense Throughput (Mbps) Standard Deviation 

Before Attack - 86.60 0.002  

 
 

During Attack 

No Defense  38.70 0.081 

Hybrid Method 86.50 0.012 

Threshold Limit 86.40 0.017 

ACLs 66.01 0.020 

IP Verify 61.96 0.026 

Load Balancing 43.35 0.032 

Software Firewall 39.10 0.071 
 
Table 6.8: Average UDP Throughputs and Standard Deviation For 30 Runs After Using Defenses on  

                  Windows Server 2012 
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Figure 6.8 presents a comparison of UDP throughput values after using six defenses. The 

result shows that the UDP throughput value before the attack was stable at about 87 Mbps. 

During the attack, however, this number dropped to 38.7 Mbps. This is because the attacker 

sent huge numbers of attack packets, which eventually caused bandwidth consumption.  

The most effective solutions in this study were the Hybrid Method and the Threshold Limit. 

Both defenses increased UDP throughput values from 38.7 Mbps to 86.5 Mbps, and 86.4 

Mbps, respectively. ACLs, which increased the number of UDP throughput values from 38.7 

Mbps to 66.01 Mbps, came in third. This number was similar to IP Verify, which increased 

the UDP throughput values to 61.96 Mbps. Network Load Balancing and the Software 

Firewall were the most ineffective defense mechanisms in this study, insignificantly 

increasing UDP throughput values from 38.7 Mbps to 43.35 Mbps and 39.1 Mbps, 

respectively.  

 

6.3.3 Round-trip Time 

This section presents the comparison of RTT before and after using six defenses on the 

webserver using Windows Server 2012. The primary tool used in this study was TCPing, 

which was the tool used to gather the delay values of the webserver.  

 

            Figure 6.9: Round-trip Time After Using Defenses on Webserver Using Windows Server 2012 
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Scenario  Defense Average RTT (ms) Standard Deviation 

Before Attack - 0.990 0.016 

 
 
 

During Attack 
 

No Defense 27.384 0.063 

Anti-DDoS Firewall 27.306 0.076 

IP Verify 26.746 0.055 

Load Balancing 28.973 0.037 

ACLs 26.677 0.032 

Threshold Limit 26.390 0.014 

Hybrid Method 26.300 0.060 
 
Table 6.9: Average RTT and Standard Deviation For 30 Runs After Using Defenses on Webserver Using   

                 Windows Server 2012  

 

Figure 6.9 illustrates the average round-trip time for 30 runs after using DDoS defenses on 

the webserver using Windows Server 2012. The result shows that the RTT before the attack 

was 0.99ms. During the attack, however, this number significantly increased to 27.38ms. In 

terms of defenses, the Hybrid Method and the Threshold Limit were the most effective 

defenses in this study. Both solutions could decrease the average RTT from 27.38ms to 

26.30ms and 26.39ms, respectively.  

ACLs came in third, which reduced the RTT from 27.38ms to 26.67ms. IP Verify came in 

fourth, which decreased the RTT to 26.746ms. The most inefficient defense in this study was 

the Software Firewall, which insignificantly reduced the RTT from 27.38ms to 27.30ms. 

Unlike other defenses, the Software Firewall dropped the attack packets at the victim 

computer; therefore, the victim computer was still affected by the attack packets. The other 

defenses, e.g., ACLs, IP Verify, Threshold Limit, and Hybrid Method, dropped the attack 

packets at the router.  

Network Load Balancing resulted in the highest RTT, which was approximately 28.97ms. 

This number was even higher than the RTT value during the attack. The reason is that this 

solution required the system resources to examine incoming packets and made load-

balancing decisions, and therefore imposed an overhead on network performance 

(Microsoft, 2014).  
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6.3.4 Packet Loss   

This section presents the comparison of the packet loss values before and after using six 

defenses on the webserver using Windows Server 2012. The primary tool used in this study 

was Iperf, which was the tool used to gather the packet loss values.  

 

     Figure 6.10: Packet Loss Values After Using Defenses on Webserver Using Windows Server 2012    

Scenario  Defense Packet Loss (%) Standard Deviation 

Before Attack - 0 - 

 
 
 

During Attack 
 

No Defense 56.17 0.042 

Anti-DDoS Firewall 55.26 0.024 

IP Verify 28.50 0.017 

Load Balancing 51.16 0.050 

ACLs 23.16 0.025 

Threshold Limit 0.1 0.035 

Hybrid Method 0.1 0.018 
 
Table 6.10: Average Packet Loss and Standard Deviation For 30 Runs After Using Defenses on  

                   Webserver Using Windows Server 2012 

 

Figure 6.10 presents a comparison of legitimate packet loss values after using DDoS 

defenses on the webserver using Windows Server 2012. The result shows there was no 

packet loss before the attack. During the attack, however, the number of legitimate packet 

loss went up to 56.1%. In terms of defenses, the most effective defenses in this study were 

Hybrid Method and Threshold Limit, which significantly reduced the packet loss value from 

56.1% to 0.1%. IP Verify and ACLs moderately decreased the number of packet loss from 

56.1% to 28.5%, and 23.1% respectively. The ineffective defenses in this study were 

Network Load Balancing and the Software Firewall. Both solutions insignificantly reduced the 

packet loss values from 56.1% to 51.1%, and 55.2% respectively. 
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6.3.5 CPU Utilization   

This section shows the CPU utilization before and after using defenses on the webserver 

using Windows Server 2012. The primary tool used in this study was Microsoft Resource 

Monitor, which was the tool used to monitor the CPU usage on the server.  

 

        Figure 6.11: CPU Utilization After Using Defenses on Webserver Using Windows Server 2012  

Scenario  Defense CPU Utilization (%) 

Before Attack - 1-2 

 
 
 

During Attack 
 

No Defense 19-24 

Anti-DDoS Firewall 25-26 

IP Verify 18-20 

Load Balancing 17-19 

ACLs 16-18 

Threshold Limit 2-3 

Hybrid Method 2 
 
Table 6.11: Average CPU Utilization For 30 Runs After Using Defenses on Webserver Using                   

                   Windows Server 2012  

 

Figure 6.11 illustrates the average CPU utilization before and after using DDoS defenses. 

The result shows that the CPU usage before the attack was stable at around 1%. During the 

attack, the CPU usage fluctuated between 19% and 24%.  

In terms of defenses, the most effective defense in this study was the Hybrid Method, which 

reduced the CPU usage from 24% to 2%. This number was similar to Threshold Limit, which 

decreased the CPU utilization to 3%. ACLs came in third, and reduced the CPU usage from 

24% to 16%. In terms of Network Load Balancing, the defense decreased the CPU usage to 

approximately 18%. This figure was similar to IP Verify, which reduced the server‟s CPU to 
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20%. Interestingly, the Software Firewall consumed the CPU utilization more than the other 

defenses, at around 25%. This number was even higher than the CPU usage during the 

attack. It is noted that the defenses (except DDoS firewall) did not reduce the CPU utilization 

directly. Instead, they had dropped attack packets before the packets could enter the server. 

As a result, the CPU did not have to work all the time in order to reply to the attack packets. 

As explained in Section 3.2 (Characteristics of UDP flood attack) the victim computer will 

send ICMP packets back to the source IP addresses when it receives UDP packets on the 

closed ports.      

 

6.4 Chapter Summary  

This chapter presented the results from the tests conducted in the computer lab. Several 

metrics, e.g., throughputs, delay, packet loss, jitter, and CPU utilization, were collected and 

used to analyze the impact of a UDP flood attack on the webserver using Windows Server 

2012. This chapter also evaluated six defenses, namely, Access Control Lists, Threshold 

Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software Firewall.  

The results showed that the performance of Windows Server 2012 was reduced during the 

UDP flood attack. The TCP throughputs before the attack were constant at 86 Mbps. During 

the attack, this number dropped significantly to 0.19 Mbps (Figure 6.1). The reason is that an 

attacker had sent a large number of UDP packets to the server, and eventually caused 

network congestion between the two nodes. The UDP throughputs before the attack were 

around 86 Mbps. During the attack, the UDP throughputs dropped moderately to 38.3 Mbps 

(Figure 6.2). The result showed that the RTT value generally increased as the attack packet 

rate increased. The average RTT before the attack was 0.99ms, and significantly increased 

to 27.38ms during the attack (Figure 6.3). The CPU usage before the attack was about 2% 

and went up significantly to 24% during the attack (Figure 6.5).   

After using the defenses on Windows Server 2012, the results showed that the performance 

of Windows OS increased. The Hybrid Method and the Threshold Limit were the most 

effective defenses against the UDP flood attack in all studies, whereas the Software Firewall 

and Network Load Balancing were the least effective defenses (IP Verify, and ACLs were 

average defenses). The Hybrid Method and Threshold Limit could increase the TCP 

throughput from 0.19 Mbps (no defense) to 86.30 Mbps, while ACLs and IP Verify 

moderately increased the TCP throughput to 18.48 Mbps and 15.67, respectively. On the 

other hand, Network Load Balancing and the Software Firewall only increased the TCP 

throughput from 0.19 Mbps (no defense) to 0.28 Mbps, and 0.25 Mbps respectively (Figure 

6.7). The UDP throughput result showed that Hybrid Method and Threshold Limit 
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significantly increased the UDP throughput from 38.7 Mbps (no defense) to 86.5 Mbps 

whereas Network Load Balancing and the Software Firewall only increased the TCP 

throughput from 38.7 Mbps (no defense) to 43.35 Mbps, and 39.10 Mbps respectively 

(Figure 6.8). The RTT result showed that Hybrid Method and Threshold Limit were the most 

effective defenses in this study. Both defenses could decrease the average RTT from 

27.38ms (no defense) to 26.30ms and 26.39ms respectively. On the other hand, Network 

Load Balancing increased the RTT from 27.38ms (no defense) to 28.97ms (Figure 6.9). The 

reason is that this solution required the system resources to examine incoming packets and 

make load-balancing decisions, and therefore imposed an overhead on network 

performance. The Hybrid Method and Threshold Limit could reduce the CPU utilization 

during the attack from 24% (no defense) to 2%, while ACLs and IP Verify reduced the CPU 

utilization to 16% and 18%, respectively. On the other hand, the Software Firewall consumed 

more CPU utilization, i.e., 25%, than other the defenses. 

The next chapter covers the evaluation of the UDP flood attack using Linux Ubuntu 13.  
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CHAPTER 7 

EVALUATION OF UDP FLOOD ATTACK ON LINUX 

UBUNTU 13 

This chapter covers the analysis of the results gathered from experiments using Linux 

Ubuntu 13. Section 7.1 covers the impact of a UDP flood attack on throughputs based on 

TCP and UDP applications. Section 7.2 shows the comparison of the computer performance 

during a UDP flood attack between Linux Ubuntu 13 and Windows Server 2012 using round-

trip time, packet loss, CPU utilization, and jitter. Section 7.3 covers the analysis of six 

defense mechanisms, namely, Access Control Lists, Threshold Limit, Hybrid Defense, IP 

Verify, Network Load Balancing, and DDoS Software Firewall. Section 7.4 provides a 

summary of the comparison of the results of the flood defenses between Linux Ubuntu 13 

and Windows Server 2012. 

 

7.1 Impact of UDP Flood Attack on Throughputs 

This section covers the impact of the UDP flood attack on throughputs before and during the 

attack. TCP and UDP were selected as the transmission protocols. The primary tools used in 

this study were Iperf and Hping3. The former was used to fill up the Ethernet link at 86.4 

Mbps while Hping3, which was the attack tool, was used to generate attack traffic at 156.2 

Mbps. To ensure high data accuracy, the test was repeated 30 times and result average and 

runs continued until the standard deviation of results was below 0.07% of the average. The 

evaluation process and measurement tools used in this chapter were discussed in Section 

4.3.2.2 and Section 5.3. In addition, in order to be consistent and produce accurate data, all 

of the hardware used was kept identical from Chapter 6.   

 

7.1.1 TCP Throughput  

This section presents the impact of a UDP flood attack on throughputs between Linux 

Ubuntu 13 and Windows Server 2012. TCP is selected as the transmission protocol, which is 

used for webserver traffic. The Y axis shows the number of throughputs in megabits per 

second, while the X axis shows the length of the experiment in seconds.    
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      Figure 7.1: Comparison of TCP Throughputs Between Linux Ubuntu 13 and Windows Server 2012 

Linux Ubuntu 13 Time (Seconds) Throughput (Mbps) Standard Deviation 

Before Attack All 94.10 0.010 

 
During Attack 

2  32.96 0.067 

3 0.39 0.072 

After 4 Seconds 0.36-0.45 - 
 
Table 7.1: Average TCP Throughputs and Standard Deviation for 30 Runs Before and During Attack  

                 on Linux Ubuntu 13 

 

Figure 7.1 illustrates the TCP throughput values between Linux and Windows platform. On 

the whole, Linux Ubuntu 13 outperformed Windows Server 2012 in terms of the number of 

throughputs before and during the attack. The result shows that the TCP throughput value 

before the attack on the Linux platform was constant at 94 Mbps, which was higher than 

Windows at about 8 Mbps. During the attack, however, the TCP throughput value on Linux 

platform significantly dropped from 94 Mbps to 32.96 Mbps within 2 seconds. Afterwards, it 

was stable at around 0.36 to 0.45 Mbps. In terms of Windows, the number of TCP 

throughputs reduced from 86 Mbps to 32 Mbps within 2 seconds. After that, it was constant 

at around 0.19 to 0.24Mbps. 

 

7.1.2 UDP Throughput  

This section presents the impact of a UDP flood attack on throughputs between Linux 

Ubuntu 13 and Windows Server 2012. UDP is selected as the transmission protocol, which 

is used for VoIP applications. The Y axis shows the number of throughputs in megabits per 

second, while the X axis shows the length of the experiment in seconds.    
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 Figure 7.2: Comparison of UDP Throughputs Between Linux Ubuntu 13 and Windows Server 2012 

Linux Ubuntu 13 Time (Seconds) Throughput (Mbps) Standard Deviation 

Before Attack All 95.70 0.010 

 
During Attack 

2  59.85 0.034 

3 43.14 0.010 

After 4 Seconds 42.9-43.8 - 
 
Table 7.2: Average UDP Throughputs and Standard Deviation for 30 Runs Before and During Attack 

                  on Linux Ubuntu 13 

 

Figure 7.2 illustrates the UDP throughput values between Linux and Windows platform. The 

result shows that the UDP throughput value before the attack on Linux platform was 

constant at 95.7 Mbps, which was higher than Windows at about 10Mbps. During the attack, 

however, the UDP throughput value on Linux platform dropped moderately from 95.7 Mbps 

to 59.85 Mbps within 2 seconds. Afterwards, it was stable at around 42.9 Mbps to 43.8 

Mbps. In terms of Windows OS, the number of UDP throughputs reduced from 86.5 Mbps to 

60.4Mbps within 2 seconds. After that, it was constant at around 38 to 39Mbps.  

A plausible speculation that could explain why Linux Ubuntu 13 outperformed Windows 2012 

is the way kernel network buffers are allocated and used by Linux platforms (Kolahi & Li, 

2011). That is, Linux operating systems have a pre-allocation of fixed-sized memory buffers 

so that when a network application sends data, these buffers will be used to avoid the 

overhead associated with buffer allocations.   
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7.2 Impact of UDP Flood Attack on Linux Ubuntu 13 and Windows Server 2012 

This section covers the impact of a UDP flood attack using Linux Ubuntu 13 and Windows 

Server 2012. The primary tools used in this study were the Webserver Stress Tool and 

Hping3. The former generated the connection request from users to the webserver assuming 

on average 10 users per second, while Hping3 was used to generate the attack traffic at 

13000 packets per second (unless the attack packet rate and packet size are otherwise 

defined in the next sections). The monitoring PC used gathered DDoS parameters while 

legitimate or attack traffic was launched. To ensure high data accuracy, the test was 

repeated 30 times and data average and runs continued until standard deviation of results 

was below 0.07% of the average.  

 
7.2.1 Round-trip Time  

This section presents a comparison of the RTT results between Linux Ubuntu 13 and 

Windows Server 2012. The primary tool used in this study was TCPing, which was the tool 

used to gather the delay values of the victim computers.  

 

            Figure 7.3: Comparison of RTT Results Between Linux Ubuntu 13 and Windows Server 2012 

Operating System Scenario Average RTT Standard Deviation 

Windows Before Attack 0.99ms 0.016 

During Attack 27.38ms 0.059 

 Linux Before Attack 0.62ms 0.050 

During Attack 26.42ms 0.067 
 
 Table 7.3: Average RTT and Standard Deviation for 30 Runs Before and During Attack on  

                  Linux Ubuntu 13                                 

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
TT

 [
m

s]
 

Number of Runs 

Before Attack Windows

During Attack Windows

Before Attack Linux

During Attack Linux

Packet rate = 13,000pps 



  Evaluation of UDP Flood Attack on Linux Ubuntu 13 
_________________________________________________________________________  

88 
 

Figure 7.3 illustrates the average of RTT for 30 runs before and during the UDP flood attack. 

On the whole, the result shows that Microsoft Server 2012 had higher delay values than 

Linux Ubuntu 13. Without the attack, the average RTT of Windows platform was 0.99ms, 

while the average RTT of Linux platform was 0.62ms. During the attack, the RTT of 

Windows Server 2012 went up significantly from 0.99 to 27.38ms, while the RTT of Linux 

Ubuntu 13 increased from 0.62 to 26.42ms. Since the hardware and monitoring tools used 

were identical from Chapter 6 and only the operating system was changed, it can be said, 

therefore, that Linux Ubuntu 13 withstood the UDP flood attack better than Windows Server 

2012 in this study.  

 

7.2.2 Packet Loss 

This section shows a comparison of legitimate packet loss results between Linux Ubuntu 13 

and Windows Server 2012. The primary tool used in this study was Iperf, which was the tool 

used to gather the packet loss values. The test was run 30 times using attack packet sizes 

ranging from 64 to 1518 Bytes, while the attack packet rate was constant at 13,000 packets 

per second. These tests generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7 

Mbps, 101.5 Mbps, 126.9 Mbps, and 150.5 Mbps respectively.  

 

Figure 7.4: Comparison of Legitimate Packet Loss Results Between Linux Ubuntu 13 and                          

                   Windows Server 2012 
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Operating System Attack Packet Size Packet Loss (%) Standard Deviation 

 
 

Windows 

256 15.215 0.021 

512 56.170 0.042 

1024 61.215 0.023 

1280 65.466 0.047 

1518 75.200 0.031 

  
 

Linux 

256 10.897 0.019 

512 54.900 0.015 

1024 60.142 0.098 

1280 63.247 0.048 

1518 74.211 0.057 
 
Table 7.4: Average Legitimate Packet Loss and Standard Deviation For 30 runs Before and During Attack  

                  on Linux Ubuntu 13 

 

Figure 7.4 illustrates the average of packet loss values before and during the UDP flood 

attack. On the whole, the result shows that the legitimate packet loss value increased as the 

attack packet size increased. There was no packet loss on either operating system when 

using the attack packet size of 64, and 128 Bytes. However, on frame size 256 Bytes (25.3 

Mbps), the packet loss on Windows Server 2012 went up moderately to 15.2% and 10.8% 

for Linux Ubuntu 13. Regarding frame size 512 Bytes (50.7 Mbps), the packet loss value of 

Windows and Linux platform significantly increased to 56.1% and 54.9%, respectively. On 

the largest frame size, 1518 Bytes (150.5 Mbps), the packet loss went up to 75.2% for 

Windows, and 74.2% for Linux.   

 

7.2.3 CPU Utilization  

This section presents a comparison of CPU utilization before and during a UDP flood attack 

between Linux Ubuntu 13 and Windows Server 2012. The primary tool used in this study 

was Microsoft Resource Monitor, which was the tool used to monitor the CPU usage on 

Windows Server 2012. For Linux operating system, we used the “top” command to find out 

the Linux CPU usage. 
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   Figure 7.5: Comparison of CPU Utilization Results Between Linux Ubuntu 13 and Windows Server 2012 

Scenario Time (Seconds) CPU Utilization (%) Standard Deviation 

 
During Attack 

(Windows) 

2  9.36 0.150 

3 19.52 0.077 

4 21.28 0.080 

After 5 Seconds 19-24 - 

 
During Attack 

(Linux) 

2  9.36 0.073 

3 18.01 0.087 

4 20.9 0.059 

After 5 Seconds 23.5-24.9 - 
 
Table 7.5: Average CPU Utilization and Standard Deviation for 30 Runs Before and During Attack on  

                  Linux Ubuntu 13 

 

Figure 7.5 illustrates the CPU utilization before and during a UDP flood attack. In terms of 

Windows Server 2012, the CPU usage before the attack was constant at 1% to 2%. During 

the attack, however, the CPU utilization went up approximately 10% within 2 seconds and 

increased to 22% in 4 seconds. Afterwards, it fluctuated between 19% and 24%.         

In terms of Linux Ubuntu 13, the result shows that the CPU usage before the attack was 

slightly lower than for Windows, which was around 0.3 to 0.7%. During the attack, Linux 

Ubuntu 13 demonstrated the better performance in terms of stability; the CPU utilization 

increased at approximately 6% within 2 seconds. Afterwards, it remained steady at 23.5% to 

24.9%.          
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7.2.4 Jitter 

This section presents a comparison of legitimate jitter results on UDP applications between 

Linux Ubuntu 13 and Windows Server 2012. The primary tool used in this study was Iperf, 

which was the tool used to gather the jitter values of the victim computers. The attack packet 

sizes used in this study were 64, 128, 256, 512, 1024, 1280, and 1518 Bytes, while the 

attack packet rate was constant at 13000 packets per second. The tests generated attack 

traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and 

150.5 Mbps respectively.  

 

 

        Figure 7.6: Comparison of Jitter Results Between Linux Ubuntu 13 and Windows Server 2012 

Attack Packet Size (Bytes) Jitter (ms) Standard Deviation 

Before Attack 0.065 0.015 

64 0.133 0.018 

128 0.128 0.027 

256 0.139 0.021 

512 5.73 0.045 

1024 15.72 0.068 

1280 19.38 0.054 

1518 29.28 0.081 
 
Table 7.6: Average Jitter and Standard Deviation for 30 Runs Before and During Attack on Linux  

                  Ubuntu 13           

                       

Figure 7.6 illustrates the average jitter value results on Linux and Windows platform. On the 

whole, Windows Server 2012 generated more jitter than Linux Ubuntu 13. In terms of Linux 

platform, the result shows that the legitimate jitter value before the attack was 0.065ms. On 

frame sizes 64, 128 and 256 Bytes (6.3 Mbps, 12.6 Mbps, and 25.3 Mbps), Linux generated 

very similar jitter values, which were 0.133ms, 0.128ms, and 0.139ms, respectively. The 
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most noticeable feature of this graph is that the jitter value significantly increased when using 

attack packet sizes between 512 and 1518 Bytes (50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and 

150.5 Mbps). By using 512 Bytes (50.7 Mbps), the average jitter value went up from 0.06 to 

5.73ms. The jitter value increased to 19.38ms if the attack packet size was 1024 Bytes 

(101.5 Mbps). On the largest frame size, 1518 Bytes (150.5 Mbps), the average jitter value 

increased significantly from 0.06 to 29.28ms.   

 

7.3 Comparisons of Defense Mechanisms on Linux Ubuntu 13  

This section provides an analysis of defense mechanisms against a UDP flood attack on 

Linux Ubuntu 13. There were six defenses used in this study, namely, Access Control Lists, 

Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software 

Firewall. The efficiency of each defense was evaluated by comparing throughputs, delay, 

packet loss, and CPU utilization values before and after using the defenses. To ensure high 

data accuracy, the test was repeated 30 times and result average and runs continued until 

standard deviation of results was below 0.07% of the average. The evaluation process and 

experimental set-up of defenses were discussed in Section 4.3.2.2 and Section 5.2.  

 

7.3.1 TCP Throughput 

This section covers the impact of a UDP flood attack on throughputs after using defenses. 

TCP was selected as the transmission protocol, which was used for webserver traffic. The 

primary tools used in this study were Iperf and Hping3. The former was used to fill up the 

Ethernet link at 86.4 Mbps, while Hping3, which was the attack tool, was used to generate 

attack traffic at 156.2 Mbps.  
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                            Figure 7.7: TCP Throughput Values After Using Defenses on Linux Ubuntu 13 

 

Scenario Defense Throughput (Mbps) Standard Deviation 

Before Attack - 94.1 0.003 

 
 

During Attack 

No Defense 0.36 0.146 

Hybrid Method 94.0 0.002 

Threshold Limit 94.0 0.001 

ACLs 53.37 0.016 

Load Balancing 47.39 0.011 

IP Verify 46.93 0.018 

Software Firewall 0.64 0.052 
 
Table 7.7: Average TCP Throughput Values and Standard Deviation for 30 Runs After Using Defenses on  

                  Linux Ubuntu 13 

 

Figure 7.7 presents the TCP throughput values after using six defenses. The result shows 

that the TCP throughput value before the attack was stable at 94.1 Mbps. This was higher 

than the TCP throughput on Windows Server 2012 at about 7.5 Mbps (as shown in Figure 

6.7). During the attack, the TCP throughput on Linux platform significantly dropped from 94.1 

Mbps to 0.36 Mbps, while the TCP throughput on Windows dropped from 86.60 Mbps to 

0.19 Mbps.       

The most effective defenses in this study were the Hybrid Method and Threshold Limit in 

which the number of throughput values before the attack and after using solutions were 

almost the same, at 94 Mbps. ACLs came in third, and increased the throughput value from 

0.36 Mbps to 53.37 Mbps. This number was marginally higher than Network Load Balancing 

and IP Verify at 5.98 Mbps and 6.44 Mbps, respectively. The most ineffective defense 

mechanism in this study was the Software Firewall, which only increased the TCP 

throughput value from 0.36 Mbps to 0.64 Mbps.  
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7.3.2 UDP Throughput 

This section covers the impact of a UDP flood attack on throughputs after using defenses. 

UDP was selected as the transmission protocol, which was used for VoIP traffic. The primary 

tools used in this study were Iperf and Hping3. The former was used to fill up the Ethernet 

link at 86.4 Mbps, while Hping3, which is the attack tool, generated the attack traffic at 156.2 

Mbps.   

 

                     Figure 7.8: UDP Throughput Values After Using Defenses on Linux Ubuntu 13 

Scenario Defense Throughput (Mbps) Standard Deviation 

Before Attack - 95.7 0.004 

 
 

During Attack 

No Defense 43.04 0.010 

Hybrid Method 95.6 0.005 

Threshold Limit 95.6 0.003 

ACLs 68.55 0.007 

IP Verify 65.35 0.006 

Load Balancing 64.15 0.007 

Software Firewall 44.07 0.011 
 
Table 7.8: Average UDP Throughput Values and Standard Deviation For 30 Runs After Using Defenses on  

                  Linux Ubuntu 13   

 

Figure 7.8 presents a comparison of UDP throughput values after using six defenses on 

Linux Ubuntu 13. The result shows that the UDP throughput value before the attack was 

stable at 95.7 Mbps. This number was higher than the UDP throughput on Windows Server 

2012 at about 9.1 Mbps (as shown in Figure 6.8). During the attack, this number dropped 

moderately from 95.70 Mbps to 43.04 Mbps, while the UDP throughput on Windows platform 

dropped from 86.60 Mbps to 38.7 Mbps.   
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In terms of defenses, the most effective solutions in this study were the Hybrid Method and 

the Threshold Limit. Both defenses significantly increased UDP throughput values from 

43.04 Mbps to 95.6 Mbps. ACLs came in third, and increased the number of user 

throughputs from 43.04 Mbps to 68.55 Mbps. This number was marginally higher than IP 

Verify and Network Load Balancing at 3.2 Mbps, and 4.4 Mbps, respectively. The most 

ineffective defense in this study was the Software Firewall, which insignificantly increased 

the UDP throughput value from 43.04 Mbps to 44.07 Mbps.   

 

7.3.3 Round-trip Time 

This section presents the comparison of RTT before and after using six defenses on Linux 

Ubuntu 13. The primary tool used in this study was TCPing, which was the tool used to 

gather the delay values of the webserver.  

 

                              Figure 7.9: Round-trip Time After Using Defenses on Linux Ubuntu 13 

Scenario  Defense Average RTT (ms) Standard Deviation 

Before Attack - 0.621 0.050 

 
 
 

During Attack 
 

No Defense 26.422 0.017 

Load Balancing 26.487 0.023 

Software Firewall 26.270 0.028 

ACLs 26.007 0.011 

Threshold Limit 25.980 0.011 

Hybrid Method 25.874 0.017 

IP Verify 25.604 0.018 

      Table 7.9: Average RTT and Standard Deviation for 30 Runs After Using Defenses on Linux Ubuntu 13 
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Figure 7.9 illustrates the average round-trip time for 30 runs after using DDoS defenses on 

Linux Ubuntu 13. On the whole, the result shows that Linux Ubuntu 13 produced delay 

values lower than Windows Server 2012 (as shown in Figure 6.9). The RTT value before the 

attack on the Linux platform was 0.62ms, and increased to 26.42ms during the attack. 

In terms of defenses, IP Verify was the most effective defense in this study, as it reduced the 

average RTT from 26.42ms to 25.60ms. It can be noted that the most effective defense for 

Windows Server 2012 was the Hybrid Method, which reduced the RTT from 27.38ms to 

26.30ms (Figure 6.9).  

In terms of Linux Ubuntu 13, the Threshold Limit, Hybrid Method, and the Software Firewall 

could decrease the average RTT during the attack to 25.98ms, 25.87ms, and 26.27ms, 

respectively. The most inefficient defense in this study was Network Load Balancing, which 

increased the RTT from 26.422ms to 26.487ms. This is caused by the switching and routing 

process as the router needs to examine incoming packets and make load-balancing 

decisions, and therefore imposes an overhead on network performance (Microsoft, 2014). 

 

7.3.4 Packet Loss   

This section presents the comparison of the packet loss values before and after using six 

defenses on Linux Ubuntu 13. The primary tool used in this study was Iperf, which was the 

tool used to gather the packet loss values. 

 

 

                           Figure 7.10: Packet Loss Values After Using Defenses on Linux Ubuntu 13 
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Scenario  Defense Packet Loss (%) Standard Deviation 

Before Attack - 0 - 

 
 
 

During Attack 
 

No Defense 54.9 0.015 

Anti-DDoS Firewall 54.1 0.008 

IP Verify 31.5 0.015 

Load Balancing 33.0 0.016 

ACLs 28.7 0.014 

Threshold Limit 0.1 - 

Hybrid Method 0.1 - 
 
Table 7.10: Average Packet Loss and Standard Deviation For 30 Runs After Using Defenses on                            

                    Linux Ubuntu 13 

 

Figure 7.10 presents a comparison of the legitimate packet loss values after using DDoS 

defenses. The result shows there was no packet loss before the attack. During the attack, 

however, the packet loss went up to 54.9%. This number was slightly lower than the packet 

loss on Windows Server 2012 at about 1% (as shown in Figure 6.10).  

In terms of defenses, the most effective defenses in this study were the Hybrid Method and 

Threshold Limit, which significantly reduced the packet loss value from 54.9% to 0.1%. 

ACLs, Network Load Balancing, and IP Verify moderately decreased the packet loss to 

28.7%, 33%, and 31.5%, respectively. The most ineffective defense in this study was the 

software firewall, which reduced the packet loss value from 54.9% to 54.1%. 

Comparing the packet loss results between the two operating systems, it can be observed 

that the packet losses after using solutions on Linux Ubuntu 13 and Windows Server 2012 

were almost the same. However, the results showed that ACLs and IP Verify outperformed 

on Windows platform, while Network Load Balancing and the software firewall outperformed 

on Linux platform (as compared to Figure 6.10). 
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7.3.5 CPU Utilization   

This section shows the CPU utilization before and after using defenses on Linux Ubuntu 13. 

The primary tool used in this study was Microsoft Resource Monitor, which was the tool used 

to monitor the CPU usage on the server.  

  

                             Figure 7.11: CPU Utilization After Using Defenses on Linux Ubuntu 13 

Scenario  Defense CPU Utilization (%) 

Before Attack - 0.3-0.7 

 
 
 

During Attack 
 

No Defense 23-25  

Software Firewall 19-21 

Load Balancing 15-18 

ACLs 13-15 

IP Verify 8-10 

Threshold Limit 3 

Hybrid Method 1-2 

              Table 7.11: Average CPU Utilization For 30 Runs After Using Defenses on Linux Ubuntu 13  

Figure 7.11 illustrates the average CPU utilization after using DDoS defenses on Linux 

Ubuntu 13. The results show that the CPU usage before the attack was stable at around 0.3 

to 0.7%, which was slightly lower than on Windows Server 2012 at about 1 to 2% (as shown 

in Figure 6.11). During the attack, the CPU usage of Linux platform fluctuated between 23% 

and 25%.  

In terms of defenses, the most effective defense in this study was the Hybrid Method, which 

reduced the CPU usage from 25% to 2%. This was similar to the Threshold Limit, which 

decreased the CPU utilization to 3%. IP Verify came in third, and reduced the CPU usage 

from 25% to 10%. In terms of ACLs, the CPU usage went down from 25% to 15%. This 
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figure was similar to Network Load Balancing, which reduced the server‟s CPU usage to 

18%. The most inefficient defense in this study was the Software Firewall, which slightly 

reduced the CPU utilization from 25% to 21%.  

 

7.4 Comparison of Defenses Against UDP Flood Attack between Linux and Windows  

This section shows a summary of result comparison of the flood defenses between Linux 

Ubuntu 13 and Windows Server 2012. The metrics used for comparison are TCP throughput 

(Section 7.4.1), UDP throughput (Section 7.4.2), round-trip time (Section 7.4.3), packet loss 

value (Section 7.4.4), and CPU utilization (Section 7.4.5).  

 

7.4.1 TCP Throughput after Using Defenses  

In terms of TCP throughputs using Windows Server 2012, the most effective defenses were 

the Hybrid Method and Threshold Limit, which increased the throughput value from 0.19 

Mbps (no defenses) to 86.30 Mbps. ACLs and IP Verify moderately increased the TCP 

throughput from 0.19 Mbps to 18.48 Mbps and 15.67 Mbps, respectively (Figure 6.7). The 

most effective defenses for Linux Ubuntu 13 were also the Hybrid Method and Threshold 

Limit, which significantly increased the throughput value from 0.36 Mbps (no defenses) to 94 

Mbps. ACLs and IP Verify moderately increased the TCP throughput from 0.36 Mbps to 

53.37 Mbps and 46.93 Mbps, respectively (Figure 7.7).  

 

7.4.2 UDP Throughput after Using Defenses  

The most effective defenses for Windows Server 2012 were the Hybrid Method and 

Threshold Limit, which increased the throughput value from 38.7 Mbps (no defenses) to 

86.40 Mbps. ACLs and IP Verify moderately increased the UDP throughput from 38.7 Mbps 

to 66.01 Mbps and 61.96 Mbps, respectively. On the other hand, Network Load Balancing 

and Software Firewall could only increase the UDP throughput from 38.7 Mbps to 43.35 

Mbps and 39.10 Mbps, respectively (Figure 6.8). In terms of Linux results, the Hybrid 

Method and Threshold Limit could significantly increase the UDP throughput from 43.04 

Mbps (no defenses) to 95.6 Mbps. ACLs and IP Verify moderately increased the UDP 

throughput from 43.04 Mbps to 68.55 Mbps and 65.35 Mbps, respectively (Figure 7.8).   
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7.4.3 Round-trip Time after Using Defenses  

The Hybrid Method and Threshold Limit were the most effective defenses for Windows 

Server 2012. These solutions decreased the average RTT from 27.38ms to 26.30ms and 

26.39ms, respectively. ACLs and IP Verify reduced the RTT from 27.38ms to 26.67ms and 

26.74ms, respectively. On the other hand, Network Load Balancing resulted in the highest 

RTT, which was approximately 28.97ms (Figure 6.9). In terms of Linux results, IP Verify 

outperformed other defenses, which reduced the RTT value from 26.42ms to 25.60ms. The 

Threshold Limit, Hybrid Method, and Software Firewall could decrease the average RTT 

during the attack from 26.42ms to 25.98ms, 25.87ms, and 26.27ms, respectively. The most 

inefficient defense for Linux OS was Network Load Balancing, which increased the RTT from 

26.42ms to 26.48ms (Figure 7.9). 

 

7.4.4 Packet Loss after Using Defenses  

The most effective defenses for Windows Server 2012 were the Hybrid Method and 

Threshold Limit, which significantly reduced the packet loss value from 56.1% to 0.1%. IP 

Verify and ACLs moderately decreased the packet loss from 56.1% to 28.5%, and 23.1%, 

respectively. On the other hand, Network Load Balancing and Software Firewall 

insignificantly reduced the packet loss values from 56.1% to 51.1%, and 55.2%, respectively 

(Figure 6.10). In terms of Linux results, the Hybrid Method and Threshold Limit outperformed 

the other defenses, both of which significantly reduced the packet loss value from 54.9% to 

0.1%. ACLs, Network Load Balancing, and IP Verify moderately decreased the packet loss 

to 28.7%, 33%, and 31.5%, respectively. The most ineffective defense in this study was 

Software Firewall, which only reduced the packet loss value from 54.9% to 54.1% (Figure 

7.10).  

 

7.4.5 CPU Utilization after Using Defenses  

In terms of Windows results, the Hybrid Method and Threshold Limit outperformed the other 

defenses, and significantly reduced the CPU usage from 24% to 2%. ACLs, Load Balancing, 

and IP Verify moderately decreased the server‟s CPU usage from 24% to 16%, 17%, and 

18%, respectively. Interestingly, the Software Firewall consumed more CPU utilization than 

the other defenses, at around 25% (Figure 6.11). The most effective defenses for Linux 

platform were the Hybrid Method and Threshold Limit, both of which reduced the CPU usage 

from 25% to 2%. IP Verify, ACLs, and Load Balancing moderately decreased the victim 

computer‟s CPU usage to 8%, 13%, and 15%, respectively. On the other hand, the Software 

Firewall slightly reduced the CPU utilization from 25% to 21% (Figure 7.11). 
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7.5 Chapter Summary   

This chapter presented the results on computer performance during a UDP flood attack for 

Linux Ubuntu 13 and the results compared with Windows Server 2012. This chapter also 

evaluated six defenses, namely, Access Control Lists, Threshold Limit, Hybrid Defense, IP 

Verify, Network Load Balancing, and DDoS Software Firewall.  

The results showed that the performance of Linux Ubuntu 13 was reduced during a UDP 

flood attack. The TCP throughput before the attack was constant at 94 Mbps, and dropped 

significantly to 0.36 Mbps during the attack (Figure 7.1). The UDP throughput before the 

attack was 95.7 Mbps, and it dropped moderately to 43.9 Mbps during the attack (Figure 

7.2). The RTT before the attack was 0.62ms, and it increased to 26.42ms during the attack 

(Figure 7.3). Before the attack, the CPU utilization was constant at 0.3% and went up to 25% 

during the attack (Figure 7.5).  

After using the defenses, the results showed that the performance of Linux Ubuntu 13 was 

increased. The Hybrid Method and Threshold Limit were the most effective defenses against 

a UDP flood attack in most of the studies, whereas the Software Firewall and Network Load 

Balancing were the least effective defenses. The Hybrid Method and Threshold Limit could 

increase the TCP throughput from 0.36 Mbps to 94 Mbps (Figure 7.7), and increased the 

UDP throughput from 43.04 Mbps to 95.6 Mbps (Figure 7.8). The RTT result showed that IP 

Verify could reduce the RTT from 26.42ms to 25.60ms, while the Hybrid Method reduced the 

RTT from 26.42 to 25.87ms (Figure 7.9). The Hybrid Method and Threshold Limit could 

significantly reduce the CPU usage from 25% (during the attack) to 2%, whereas IP Verify, 

ACLs, Network Load Balancing, and the Software Firewall only moderately reduced the CPU 

utilization between 8% and 21% (Figure 7.11).     

When comparing the operating systems‟ performance, it can be said that Linux Ubuntu 13 

could withstand a UDP flood attack better than Windows Server 2012. The result showed 

that the TCP throughput before the attack on Linux platform was constant at 94 Mbps, which 

was higher than Windows at about 8 Mbps. During the attack, the throughput values of both 

operating systems significantly dropped to 0.36 Mbps and 0.19 Mbps, respectively (Figure 

7.1). The UDP throughput before the attack on Linux platform was constant at 95.7 Mbps, 

which was higher than Windows at about 10Mbps. During the attack, the UDP throughput of 

Linux and Windows OS dropped moderately to 43.9 Mbps and 38.3 Mbps, respectively 

(Figure 7.2). Without the attack, the average RTT of Windows platform was 0.99ms, which 

was higher than Linux platform at 0.36ms. During the attack, the average RTT of Windows 

Server 2012 went up to 27.38ms, while the RTT of Linux Ubuntu 13 increased to 26.42ms 
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(Figure 7.3). Windows Server 2012 utilized the CPU resource more than Linux Ubuntu 13 at 

approximately 0.7% (before the attack). During the attack, Linux Ubuntu 13 demonstrated 

the better performance in terms of stability; the CPU utilization remained steady at around 

23.5% while the CPU utilization of Windows Server 2012 fluctuated between 19% and 24%.     

When comparing the defenses between the two operating systems, it can be said that the 

Hybrid Method and Threshold Limit were the most effective defenses against a UDP flood 

attack in most studies, whereas the Software Firewall and Network Load Balancing were the 

least effective defenses (IP Verify, and ACLs were average defenses). The Hybrid Method 

and Threshold Limit could increase the TCP throughput from 0.36 Mbps to 94 Mbps (for 

Linux Ubuntu 13), and from 0.19 Mbps to 86.4 Mbps (for Windows Server 2012). In terms of 

UDP throughputs, the Hybrid Method and Threshold Limit increased the UDP throughput 

from 43.04 Mbps to 95.6 Mbps (Linux Ubuntu 13), and from 38.7 Mbps to 86.5 Mbps 

(Windows Server 2012). The RTT results after using the defenses showed that the Hybrid 

Method was the most effective defense for Windows OS, which reduced the RTT from 

27.38ms to 26.30ms (Figure 6.9), while IP Verify was the most effective defense for Linux 

OS, which reduced the RTT from 26.42ms to 25.60ms (Figure 7.9). The Hybrid Method and 

Threshold Limit could reduce the CPU usage of Windows OS during an attack from 24% to 

2% (Figure 6.11), and from 25% to 2% for Linux Ubuntu 13 (Figure 7.11).  

The next chapter covers the discussion of the results obtained in Chapter 6 and Chapter 7.      
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CHAPTER 8 

SUMMARY, CONCLUSIONS, AND FUTURE WORKS 

 

A revolution occurred in the world of computers and communication with the advent of the 

Internet. This technology has become increasingly important to our current society; it has 

changed our way of communication, business modes, and made information publicly 

accessible quickly and easily, and put it within easy reach. However, along with the 

advantages of the Internet, there are also disadvantages. There is no absolute security in 

the Internet world, and hackers can use the Internet to launch many different types of attacks 

on a targeted network, one of which is DDoS attacks.   

In this research, new results were obtained to evaluate the impact of a UDP flood attack, 

which was the type of DDoS attack used in this study. Tests were conducted on computers 

using the latest version of Windows and Linux platforms, namely, Windows Server 2012 and 

Linux Ubuntu 13. This research also produced new evaluation results on various defense 

mechanisms such as Access Control Lists, Threshold Limit, IP Verify, Hybrid Method, 

Network Load Balancing, and Software Firewall. 

The results showed that the performance of Windows Server 2012 (e.g., throughputs, round-

trip time, packet loss, CPU utilization, and jitter) reduced during the UDP flood attack. The 

TCP throughput before the attack was constant at 86 Mbps, and it significantly dropped to 

0.19 Mbps during the attack. The UDP throughput before the attack was constant at 86 

Mbps, and it went down to 38.5 Mbps during the attack. The RTT before the attack was 

0.99ms, and it increased to 27.38ms during the attack. The packet loss result showed that 

there was no legitimate packet loss before the attack. During the attack, the packet loss 

value went up to 56.1%, 61.2%, 65.4%, and 75.2% when using the attack packet sizes of 

512 Bytes, 1024 Bytes, 1280 Bytes, and 1512 Bytes, respectively. The CPU utilization of 

Windows Server 2012 before the attack was constant at 2%. During the attack, the CPU 

usage went up to 24%. The jitter value before the attack was 0.66ms. During the attack, the 

jitter values went up slightly when using the attack packet sizes between 64, 128, and 256 

Bytes (at 0.92ms, 1.04ms, and 1.061ms, respectively), and it went up significantly to 

41.13ms when using the attack packet size of 1518 Bytes.      
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After using defenses on Windows Server 2012, the results showed that the performance of 

Windows OS was increased. The Hybrid Method and Threshold Limit were the most 

effective defenses against the UDP flood attack in all studies, whereas, the Software Firewall 

and Network Load Balancing were the least effective defenses (IP Verify, and ACLs were 

average defenses). The Hybrid Method and Threshold Limit could increase the TCP 

throughput from 0.19 Mbps (no defense) to 86.30 Mbps. ACLs and IP Verify moderately 

increased the TCP throughput to 18.48 Mbps and 15.67 Mbps, respectively. On the other 

hand, Network Load Balancing and the Software Firewall only increased the TCP throughput 

from 0.19 Mbps (no defense) to 0.28 Mbps, and 0.25 Mbps, respectively. The UDP 

throughput result showed that the Hybrid Method and Threshold Limit significantly increased 

the UDP throughput from 38.7 Mbps (no defense) to 86.5 Mbps, while ACLs and IP Verify 

moderately increased the UDP throughput to 66.01 Mbps and 61.96 Mbps, respectively. On 

the other hand, Network Load Balancing and the Software Firewall only increased the UDP 

throughput from 38.7 Mbps (no defense) to 43.35 Mbps and 39.1 Mbps, respectively. The 

RTT result showed that the Hybrid Method and Threshold Limit were the most effective 

defenses in this study. Both solutions could decrease the average RTT from 27.38ms (no 

defense) to 26.30ms and 26.39ms, respectively. ACLs and IP Verify could reduce the RTT to 

26.67ms, and 26.74ms, respectively. On the other hand, Network Load Balancing increased 

the RTT from 27.38ms (no defense) to 28.97ms. The packet loss result showed that the 

Hybrid Method and Threshold Limit could significantly reduce the packet loss value from 

56.1% (no defense) to 0.1%. IP Verify and ACLs moderately decreased the packet loss 

value to 28.5%, and 23.1%, respectively. The most ineffective defenses in this study were 

Network Load Balancing and the Software Firewall. Both defenses reduced the packet loss 

values insignificantly from 56.1% (no defense) to 51.1%, and 55.2%, respectively. The 

Hybrid Method and Threshold Limit could decrease the CPU utilization during the attack 

from 24% (no defense) to 2%. ACLs and IP Verify could reduce the CPU utilization to 16% 

and 18%, respectively. On the other hand, the Software Firewall consumed the CPU 

utilization more than other defenses, which was 25%.  

The results for Linux Ubuntu 13 showed that the performance of Linux OS reduced during 

the UDP flood attack. The TCP throughput before the attack was constant at 94.1 Mbps, and 

dropped significantly to 0.36 Mbps during the attack. The UDP throughput value before the 

attack was constant at 95.7 Mbps and went down to 42.9 Mbps during the attack. The RTT 

before the attack was 0.62ms, and increased to 26.42ms during the attack. The packet loss 

result showed that there was no legitimate packet loss before the attack. During the attack 

the packet loss value went up to 54.9%, 60.1%, 63.2%, and 74.2% when using the attack 

packet sizes of 512 Bytes, 1024 Bytes, 1280 Bytes, and 1512 Bytes, respectively. The CPU 
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utilization result showed that the CPU usage of Linux OS before the attack was constant at 

0.3%, and went up to 25% during the attack. The jitter value before the attack was 0.065ms 

and went up significantly to 29.28ms. During the attack, the jitter values went up slightly 

when using the attack packet sizes between 64, 128, and 256 Bytes (at 0.133, 0.128ms, and 

0.139ms, respectively) and went up significantly to 29.28ms when using the attack packet 

size of 1518 Bytes.       

After using defenses on Linux Ubuntu 13, the results showed that the performance of Linux 

OS was increased. Hybrid Method and Threshold Limit were the most effective defenses 

against the UDP flood attack in most studies (except the RTT result) whereas the Software 

Firewall was the least effective defense (IP Verify, and ACLs were average defenses). The 

Hybrid Method and Threshold Limit could increase the TCP throughput from 0.36 Mbps (no 

defense) to 94 Mbps. ACLs and IP Verify moderately increased the TCP throughput to 53.37 

Mbps and 46.93 Mbps, respectively. On the other hand, the Software Firewall only increased 

the TCP throughput from 0.19 Mbps (no defense) to 0.64 Mbps. The UDP throughput result 

showed that the Hybrid Method and Threshold Limit could increase the UDP throughput from 

43.04 Mbps (no defense) to 95.6 Mbps. ACLs, IP Verify, and Network Load Balancing 

moderately increased the UDP throughput from 43.04 Mbps (no defense) to 68.55 Mbps, 

65.35 Mbps, and 64.15 Mbps, respectively. On the other hand, the Software Firewall 

insignificantly increased the UDP throughput from 43.04 Mbps (no defense) to 44.07 Mbps. 

The RTT result showed that IP Verify was the most effective defense in this study, as it 

reduced the average RTT from 26.42ms (no defense) to 25.60ms, while the Hybrid Method 

reduced the RTT to 25.87ms. The Threshold Limit and ACLs could reduce the RTT from 

26.42 (no defense) to 25.98ms, and 26.0ms, respectively. On the other hand, Network Load 

Balancing increased the RTT from 26.42ms (no defense) to 26.48ms. The packet loss result 

showed that the Hybrid Method and Threshold Limit could significantly reduce the packet 

loss value from 54.9% (no defense) to 0.1%. IP Verify and ACLs moderately decreased the 

packet loss value to 31.5% and 28.7%, respectively. The most ineffective defense in this 

study was the Software Firewall which reduced the packet loss value insignificantly from 

54.9% (no defense) to 54.1%. The CPU utilization result showed that the Hybrid Method and 

Threshold Limit could decrease the CPU utilization during the attack from 25% (no defense) 

to 2%. IP Verify and ACLs could reduce the CPU utilization to 8% and 13%, respectively. On 

the other hand, the Software Firewall insignificantly reduced the CPU usage from 25% to 

21%.  
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When comparing the performance between the two operating systems, it can be said that 

Linux Ubuntu 13 could withstand the UDP flood attack better than Windows Server 2012. 

The result showed that the TCP throughput before the attack on Linux platform was constant 

at 94 Mbps, which was higher than Windows by 8 Mbps. During the attack, the throughput 

values of both operating systems dropped significantly to 0.36 Mbps (Linux) and 0.19 Mbps 

(Windows). The UDP throughput before the attack on Linux platform was constant at 95.7 

Mbps, which was higher than Windows by 10 Mbps. During the attack, the UDP throughput 

of Linux and Windows OS dropped moderately to 43.9 Mbps and 38.3 Mbps, respectively. 

Without the attack, the average RTT of Windows platform was 0.99ms, which was higher 

than Linux platform at 0.36ms. During the attack, the average RTT of Windows Server 2012 

went up to 27.38ms, while the RTT of Linux Ubuntu 13 increased to 26.42ms. Windows 

Server 2012 utilized the CPU resource before the attack at about 2%, while Linux Ubuntu 13 

utilized the CPU resource at about 0.5%. During the attack, Linux Ubuntu 13 demonstrated 

better performance in terms of stability; the CPU utilization remained steady at around 

23.5%, while the CPU utilization of Windows Server 2012 fluctuated between 19% and 24%.     

When comparing defenses between the two operating systems, it can be said that the 

Hybrid Method and Threshold Limit were the most effective defenses against the UDP flood 

attack for both operating systems, whereas the Software Firewall was the least effective 

defense (IP Verify, and ACLs were average defenses). The Hybrid Method and Threshold 

Limit defenses could increase the TCP throughput from 0.36 Mbps to 94 Mbps (for Linux 

Ubuntu 13) and from 0.19 Mbps to 86.4 Mbps (for Windows Server 2012). When comparing 

the UDP throughput, the Hybrid Method and Threshold Limit could increase the UDP 

throughput from 43.04 Mbps to 95.6 Mbps (Linux Ubuntu 13), and from 38.7 Mbps to 86.5 

Mbps (Windows Server 2012). It can be noted that throughputs increased more for Linux OS 

when all defenses were implemented. The RTT results after using defenses showed that the 

Hybrid Method was the most effective defense for Windows OS, and reduced the RTT from 

27.38ms to 26.30ms, while IP Verify was the most effective defense for Linux OS, and 

reduced the RTT from 26.42ms to 25.60ms. The Hybrid Method and Threshold Limit could 

reduce the CPU usage of Windows OS from 24% (no defense) to 2%, and from 25% (no 

defense) to 2% for Linux Ubuntu 13. Based on all the results, it can be concluded that Linux 

Ubuntu 13 withstood the UDP flood attack better than Windows Server 2012, while the 

Hybrid Method and Threshold Limit were the most effective defenses against the UDP flood 

attack for both Windows and Linux platforms.  
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8.1 Future Work 

This study provided a testbed study of the impact of a UDP flood attack on computers using 

the latest versions of Windows and Linux platforms, namely, Window Server 2012 and Linux 

Ubuntu 13. This study also compared the performance of six defense mechanisms that can 

be adopted on networks to defend against the attack. The following is future studies that can 

be done: 

 

8.1.1 Different Types of DDoS Attacks and Defenses 

There are other attacks and defenses that can be evaluated in a testbed environment. For 

example, ARP Request Attacks, ICMP Flood Attacks, Smurf Attacks, and TCP SYS Flood 

Attacks. These attacks can be evaluated on the latest version of operating systems such as 

Windows 8.1, Linux Fedora 20, Linux GNOME 3.13, and Red Hat Enterprise Linux 7.  

 

8.1.2 IPv6 Router Advertisement Attack and Defenses 

We used a testbed based on IPv4 in this thesis, as IPv6 is being implemented; the testbed 

can be set up using IPv6 and various attacks and defense mechanisms evaluated. For 

example, IPv6 Router Advertisement (RA) Attack can be evaluated. The attack occurs when 

the attacker floods the network with a large number of Router Advertisement packets and 

forcing operating systems to create IPv6 addresses in response to every packet it receives. 

This will cause 100% CPU usage on the victim computer, preventing to process other 

application requests. 

 

8.1.3 DDoS Attacks on Client with Mobility  

A mobile phone can also be a target of DDoS attacks (Hossain, Atiquzzaman, & Ivancic, 

2011). Further study can include impact of DDoS attacks and defenses on a mobile client.  
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APPENDIX 

Appendix A: Hardware Specifications  

Router  

Cisco 2811 Specification 

Data Link Protocol  Fast Ethernet and Ethernet 

Management Protocol SNMP3  

Network/Transport Protocol IPsec 

Ports 2 router ports/9 switching ports 

RAM DDR SDRAM 256MB/768MB (Maximal) 

Flash Memory 64MB/256MB(Maximal) 

Voltage Required  AC 120/230V  

Width 17.2 Inches 

Height  1.8 Inches 

Weight  14.1 lbs.  

Features Firewall protection, VPN support, MPLS support, 
hardware encryption, and Quality of Service (QoS) 

                                                        Table 1: Cisco 2811 Specifications  

Switch 

Cisco SG 200-08  Specification 

Switching Capacity 13.6 Gigabits per second 

CPU Memory 32 MB 

Packet Buffer 4 Mb 

Flash Memory 8 MB 

Security 802.1X 

Ports 8 Gigabit Ethernet 

Standards  Fast Ethernet and Ethernet  

Dimensions (Weight x Height x 
Depth) 

4.45 x 1.06 x 5.12 Inches 

Voltage Required 100V-240V 

Features Port grouping, Quality of Service, VLAN, and Voice VLAN 

                                                       Table 2: Cisco SG 200-08 Specifications  
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