

PERFORMANCE ANALYSIS OF DEFENSE

MECHANISMS AGAINST UDP FLOOD ATTACKS

KIATTIKUL TRESEANGRAT

2014

i

ABSTRACT

A Distributed Denial of Service (DDoS) attack remains one of the most common and

devastating security threats to the Internet world. The main purpose of an attack is to disable

the use of services on the Internet or the victim network by sending a large number of IP

packets to the targeted system. Since no single solution for a DDoS attack has been found,

these attacks have managed to prevail on the Internet for a decade. Therefore, it is

necessary and important to evaluate such an attack in a real testbed environment to find the

most suitable defense mechanism.

In this thesis, the different types of DDoS attacks are discussed followed by a focus on UDP

flood attacks. Tests were conducted and new results obtained on the impact of a UDP flood

attack on computers using the latest versions of Windows and Linux platforms, e.g.,

Windows Server 2012, Windows 8, and Linux Ubuntu 13. This research also produced new

evaluation results on various defense mechanisms such as Network Load Balancing,

Software Firewall, Access Control Lists, Threshold Limit, Hybrid Method, and IP Verify.

Unlike simulation studies, this project lays down the steps involved in implementing the

attack in a real testbed environment. In this study, the victim network is based on an Intranet

network environment that provides several services (e.g., a web service and file transfer

service) to legitimate clients. An attacker in the testbed, on the other hand, will launch the

attack from outside the local subnet. Several metrics such as round-trip time, user

throughput, packet loss, and CPU utilization of the victim computer were gathered in order to

investigate the impact of an attack.

The findings of this study concluded that Linux Ubuntu 13 withstood UDP flood attacks better

than Windows Server 2012 while the Hybrid Method and Threshold Limit were the most

effective defenses against UDP flood attacks for both Windows and Linux platforms. Both

defenses significantly increased throughputs, and reduced the RTT, packet loss, and CPU

utilization of a victim computer. On the other hand, the Software Firewall was the least

effective defense in all studies.

ii

ACKNOWLEDGEMENTS

First of all I would like to acknowledge my principal supervisor, Dr Samad Kolahi, and my

associate supervisor, Bahman Sarrafpour, for giving me the opportunity to carry out this

research project and for giving me their valuable time and assistance from the beginning

through to the completion of this study. I would also like to acknowledge my postgraduate

program director, Dr Chandimal Jayawardena. This thesis would not have been successfully

completed without their guidance.

Secondly, I would like to give special thanks to my previous lecturers in Department of

Computing at Unitec and at Mahanakorn University of Technology who have provided me

with valuable knowledge and skills during the course. Their knowledge and experience have

empowered me to reach the level required to complete this study.

Lastly, I would like to express my appreciation and thanks to my family members who have

facilitated and provided me with this opportunity and supported me during this thesis as well

as the other requirements to fulfill my master‟s degree.

iii

TABLE OF CONTENTS

Abstract .. i

Acknowledgements .. ii

List of Tables ... vii

List of Figures .. viii

List of Abbreviations .. x

1. Chapter 1: Introduction ... 1

1.1 Internet Security .. 1

1.2 Event of DDoS Attacks .. 1

1.3 Impact of DDoS on Business ... 3

1.4 Related Work ... 4

1.5 Motivation .. 6

1.6 Research Contribution ... 7

1.7 Structure of the Thesis ... 7

1.8 Chapter Summary ... 8

2. Chapter 2: Distributed Denial of Service Attacks ... 9

2.1 Definition of Distributed Denial of Service Attacks ... 9

2.2 Characteristics of DDoS Attacks .. 10

2.3 Categories of DDoS Attacks .. 10

2.3.1 Consumption of Bandwidth ... 11

2.3.2 Consumption of Resources ... 11

2.3.3 Exploitation of Programming Defects .. 11

2.4 Common Types of DDoS Attacks .. 12

2.4.1 TCP SYN Flood Attack .. 12

2.4.2 Smurf Attack ... 13

2.4.3 Application-Level Flood Attack .. 14

2.4.4 ARP Request Attack ... 15

2.4.5 ICMP Flood Attack .. 16

2.4.6 Ping of Death .. 17

2.4.7 UDP Flood Attack .. 18

2.5 Classification of DDoS Prevention Mechanisms .. 18

2.5.1 General Prevention Techniques .. 18

2.5.2 Filtering Defenses Techniques .. 20

iv

2.6 DDoS Impact Metrics ... 22

2.6.1 Throughput .. 22

2.6.2 Round-Trip Time ... 22

2.6.3 Packet Loss .. 23

2.6.4 CPU Utilization .. 23

2.6.5 Jitter .. 23

2.7 Chapter Summary ... 23

3. Chapter 3: UDP Flood Attack ... 24

3.1 Definition of a UDP Flood Attack ... 24

3.2 Characteristics of a UDP Flood Attack ... 24

3.3 UDP Flood Attack using Spoofed IP Address .. 25

3.4 Mechanism of UDP Flood Attack using Zombies ... 26

3.5 UDP Flood Attack Tools .. 28

3.5.1 Agent-based Attack Tools ... 28

3.5.2 IRC-based Attack Tools .. 29

3.6 Protocols involved in a UDP Flood Attack .. 30

3.6.1 User Datagram Protocol .. 30

3.6.2 Internet Control Message Protocol .. 34

3.7 Chapter Summary ... 35

4. Chapter 4: Methodology ... 36

4.1 Research Hypothesis... 36

4.2 Method Used for Study .. 36

4.2.1 DDoS Attack Evaluation Methods ... 37

4.3 Data Collection Process .. 38

4.3.1 Literature Review Process .. 38

4.3.2 Experimental Data Gathering Process .. 39

4.4 Chapter Summary ... 45

5. Chapter 5: Experimental Design .. 46

5.1 Experimental Set-up of a UDP Flood Attack .. 46

5.1.1 Hardware and Software Specification .. 48

5.2 Experimental Set-up of Defenses .. 49

5.2.1 Access Control Lists .. 49

5.2.2 Threshold Limit ... 51

5.2.3 Hybrid Defense ... 54

v

5.2.4 IP Verify .. 56

5.2.5 Network Load Balancing ... 58

5.2.6 Anti-DDoS Firewall .. 60

5.3 Network Performance Measurements Tools .. 61

5.3.1 Iperf... 62

5.3.2 Wireshark .. 63

5.3.3 TCPing .. 63

5.3.4 Webserver Stress Tool .. 64

5.3.5 Hping3 .. 65

5.4 Chapter Summary ... 66

6. Chapter 6: Evaluation of UDP Flood Attack on Windows Server 2012 67

6.1 Impact of UDP Flood Attack on Throughputs ... 67

6.1.1 TCP Throughput.. 67

6.1.2 UDP Throughput ... 68

6.2 Impact of UDP Flood Attack on Webserver Using Windows Server 2012 70

6.2.1 Round-trip Time .. 70

6.2.2 Packet Loss .. 71

6.2.3 CPU Utilization .. 73

6.2.4 Jitter .. 74

6.3 Comparisons of Defense Mechanisms on Windows Server 2012 75

6.3.1 TCP Throughput.. 75

6.3.2 UDP Throughput ... 77

6.3.3 Round-trip Time .. 78

6.3.4 Packet Loss .. 80

6.3.5 CPU Utilization .. 81

6.4 Chapter Summary ... 82

7. Chapter 7: Evaluation of UDP Flood Attack on Linux Ubuntu 13 84

7.1 Impact of UDP Flood Attack on Throughputs ... 84

7.1.1 TCP Throughput.. 84

7.1.2 UDP Throughput ... 85

7.2 Impact of UDP Flood Attack on Linux Ubuntu 13 and Windows Server 2012 87

7.2.1 Round-trip Time .. 87

7.2.2 Packet Loss .. 88

7.2.3 CPU Utilization .. 89

7.2.4 Jitter .. 91

vi

7.3 Comparisons of Defense Mechanisms on Linux Ubuntu 13 92

7.3.1 TCP Throughput.. 92

7.3.2 UDP Throughput ... 94

7.3.3 Round-trip Time .. 95

7.3.4 Packet Loss .. 96

7.3.5 CPU Utilization .. 98

7.4 Comparison of Defenses Against UDP Flood Attack between Linux and Windows 99

7.4.1 TCP Throughput after Using Defenses .. 99

7.4.2 UDP Throughput after Using Defenses ... 99

7.4.3 Round-trip Time after Using Defenses .. 100

7.4.4 Packet Loss after Using Defenses .. 100

7.4.5 CPU Utilization after Using Defenses .. 100

7.5 Chapter Summary ... 101

8. Chapter 8: Summary Conclusions and Future Works .. 103

8.1 Future Work ... 107

8.1.1 Different Types of DDoS Attacks and Defenses .. 107

8.1.2 IPv6 Router Advertisement Attack and Defenses .. 107

8.1.3 DDoS Attacks on Client with Mobility ... 107

Appendix ... 108

Appendix A: Hardware Specifications .. 108

Router .. 108

Switch .. 108

References .. 109

vii

LIST OF TABLES

Table 3.1: Structure of a UDP Datagram ... 31

Table 3.2: Comparison Between TCP and UDP .. 34

Table 4.1: Credible Resources .. 39

Table 4.2: DDoS Impact Metrics and Tools Used For Collecting Data 39

Table 5.1: Hardware Specifications ... 48

Table 5.2: Software Specifications .. 49

Table 5.3: List of Risky IP Addresses .. 50

Table 6.1: Average TCP Throughputs and Standard Deviation on Windows Server 2012 ... 68

Table 6.2: Average UDP Throughputs and Standard Deviation on Windows Server 2012 .. 69

Table 6.3: Average RTT and Standard Deviation on Windows Server 2012 71

Table 6.4: Average Packet Loss and Standard Deviation on Windows Server 2012 72

Table 6.5: Average CPU Utilization and Standard Deviation on Windows Server 2012 73

Table 6.6: Average Jitter and Standard Deviation on Windows Server 2012 74

Table 6.7: TCP Throughputs After Using Defenses on Windows Server 2012 76

Table 6.8: UDP Throughputs After Using Defenses on Windows Server 2012 77

Table 6.9: Average RTT After Using Defenses on Windows Server 2012 79

Table 6.10: Average Packet Loss After Using Defenses on Windows Server 2012 80

Table 6.11: Average CPU Utilization After Using Defenses on Windows Server 2012 81

Table 7.1: Average TCP Throughputs and Standard Deviation on Linux Ubuntu 13 85

Table 7.2: Average UDP Throughputs and Standard Deviation on Linux Ubuntu 13 86

Table 7.3: Average RTT and Standard Deviation on Linux Ubuntu 13 87

Table 7.4: Average Packet Loss and Standard Deviation on Linux Ubuntu 13 89

Table 7.5: Average CPU Utilization and Standard Deviation on Linux Ubuntu 13 90

Table 7.6: Average Jitter and Standard Deviation on Linux Ubuntu 13 91

Table 7.7: TCP Throughputs After Using Defenses on Linux Ubuntu 13 93

Table 7.8: UDP Throughputs After Using Defenses on Linux Ubuntu 13 94

Table 7.9: Average RTT After Using Defenses on Linux Ubuntu 13 95

Table 7.10: Average Packet Loss After Using Defenses on Linux Ubuntu 13 97

Table 7.11: Average CPU Utilization After Using Defenses on Linux Ubuntu 13 98

viii

LIST OF FIGURES

Figure 1.1: Size of Largest Reported DDoS Attack in Gbps from 2002 to 2012 2

Figure 1.2: Business Impact of DDoS Attacks in Data Center ... 3

Figure 2.1: Vulnerability of TCP 3-way Handshake ... 12

Figure 2.2: Smurf Attack Methods ... 14

Figure 2.3: Communication in LAN using ARP .. 16

Figure 3.1: UDP Behavior Analysis to Closed Ports ... 25

Figure 3.2: UDP Flood Attack using Spoofed IP Addresses .. 26

Figure 3.3: Mechanism of UDP Flood Attack using Zombies .. 27

Figure 4.1: Example of CPU Utilization Output from Windows Task Manager 40

Figure 4.2: Example of Round-trip Time Output from TCPing ... 41

Figure 4.3: Example of Packet Loss Output from Iperf .. 42

Figure 4.4: Example of Jitter Output from Iperf .. 42

Figure 4.5: Example of UDP Throughputs Output from Iperf ... 43

Figure 5.1: UDP Attack Testbed Set-up .. 46

Figure 5.2: Access Control List Set-up .. 50

Figure 5.3: Threshold Limit Set-up .. 52

Figure 5.4: Output from Wireshark after using Threshold Limit Technique 53

Figure 5.5: Threshold Limit Defense Strategy ... 53

Figure 5.6: Hybrid Defense Set-up .. 54

Figure 5.7: Hybrid Defense Strategy ... 55

Figure 5.8: IP Verify Set-up ... 56

Figure 5.9: IP Verify Strategy .. 57

Figure 5.10: Network Load Balancing Network Set-up .. 59

Figure 5.11: Software Firewall Network Set-up ... 60

Figure 5.12: Example of Output from Anti-DDoS Guardian ... 61

Figure 5.13: Example of UDP Throughput Output from Iperf ... 62

Figure 5.14: Example of Wireshark Output .. 63

Figure 5.15: Example of TCPing Output .. 64

Figure 5.16: Example of Webserver Stress Tool Output .. 65

Figure 5.17: Example of Hping3 Output .. 66

Figure 6.1: TCP Throughputs Before and During Attack on Windows Server 2012 68

Figure 6.2: UDP Throughputs Before and During Attack on Windows Server 2012 69

ix

Figure 6.3: Round-trip Before and During Attack on Windows Server 2012 70

Figure 6.4: Size of Attack Packet VS Packet Loss on Windows Server 2012 72

Figure 6.5: CPU Utilization Before and During Attack on Windows Server 2012 73

Figure 6.6: Jitter VS Attack Packet Size on Windows Server 2012 74

Figure 6.7: TCP Throughputs After Using Defenses on Windows Server 2012 76

Figure 6.8: UDP Throughputs After Using Defenses on Windows Server 2012 77

Figure 6.9: Round-trip Time After Using Defenses on Windows Server 2012 78

Figure 6.10: Packet Loss Values After Using Defenses on Windows Server 2012 80

Figure 6.11: CPU Utilization After Using Defenses on Windows Server 2012 81

Figure 7.1: Comparison of TCP Throughputs Between Linux and Windows 85

Figure 7.2: Comparison of UDP Throughputs Between Linux and Windows 86

Figure 7.3: Comparison of RTT Results Between Linux and Windows 87

Figure 7.4: Comparison of Packet Loss Results Between Linux and Windows.................... 88

Figure 7.5: Comparison of CPU Utilization Results between Linux and Windows 90

Figure 7.6: Comparison of Jitter Results Between Linux and Windows 91

Figure 7.7: TCP Throughputs After Using Defenses on Linux Ubuntu 13 93

Figure 7.8: UDP Throughputs After Using Defenses on Linux Ubuntu 13 94

Figure 7.9: Round-trip Time After Using Defenses on Linux Ubuntu 13 95

Figure 7.10: Packet Loss Values After Using Defenses on Linux Ubuntu 13 96

Figure 7.11: CPU Utilization After Using Defenses on Linux Ubuntu 13 98

x

LIST OF ABBREVIATIONS

ACL Access Control List

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CPU Central Processing Unit

DDoS Distributed Denial of Service

DETER Defense Technology Experimental Research

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial of Service

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IPAD Internet Protocol Address Database

IP Internet Protocol

IPS Intrusion Prevention System

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IRC Internet Relay Chat

ISP Internet Service Provider

LAN Local Area Network

MAC Address Media Access Control Address

Mbps Megabits per Second

MS Millisecond

NFS Network File System

NIC Network Interface Card

NLB Network Load Balancing

NTP Network Time Protocol

OS Operating System

PC Personal Computer

PPS Packets per Second

QoS Quality of Service

RA Router Advertisement

RAM Random Access Memory

RPF Reverse Path Forwarding

RTT Round Trip Time

SLA Service-Level Agreement

TCP Transmission Control Protocol

TCP/IP Transport Communication Protocol and Internet Protocol

TFN Tribe Flood Network

UDP Connectionless User Datagram Protocol

VoIP Voice Over Internet Protocol

1

CHAPTER 1

INTRODUCTION

1.1 Internet Security

A revolution occurred in the world of computers and communication with the advent of the

Internet. Nowadays, such a technology has become increasingly important to current

society; it has changed our way of communication, business modes, and made information

publicly accessible quickly and easily manner, and within easy reach. Many organizations

use such technology to provide various services to their customers, for example, online

banking, shopping online, and video conferencing.

However, along with the advantages of the Internet, there are also some disadvantages.

There is no absolute security in the Internet world, and hackers can use the Internet to

launch many different types of attacks on a targeted network, one of which is known as a

Distributed Denial of Service attack (DDoS attack).

A DDoS attack is one of the most common and major threats to the Internet in which the

goal of the attacker is to consume resources of the victim, usually by sending a high volume

of seemingly legitimate traffic requesting services from the victim. As a result, it creates

network congestion on the targeted computer, thus disrupting its normal Internet operation

(Gupta, Joshi, & Misra, 2010).

1.2 Event of DDoS Attacks

The first reported DDoS attack appeared in late 1999 against the University of Minnesota,

Canada. The attack, which was launched by 227 Zombies (compromised computers) shut

down the university‟s network for more than two days (Garber, 2000). DDoS attacks

received further attention in February 2000 when a hacker using a DDoS attack crippled

several major Internet companies including Amazon.com, Yahoo!, eBay, and CNN

Interactive, significantly slowing them down or rendering their websites inaccessible (Singh &

Juneja, 2010).

Experts estimated that during the three hours Yahoo! was down, the company‟s loss of

advertising revenue and e-commerce was approximately $500,000. The resulting down time

for Amazon.com cost them an estimated $600,000. During the attack, the number of

Introduction

2

CNN.com‟s users dropped to five per cent of the normal volume, while Buy.com went from

100% availability to 9.4% (Hutt, Hoyt, & Bosworth, 2002).

Despite their impact, there are no effective strategies to deal with these attacks which have

been in existence for almost a decade. According to a worldwide infrastructure security

report in 2012, half of the survey respondents (130 respondents in total) indicated they have

experienced DDoS attacks against their infrastructures (e.g., routers, firewalls, and load

balancers), and one-quarter encountered DDoS attacks against services used by their

customers and partners during the survey period. The result also showed that about 10% of

the attacks were launched by malicious insiders (Anstee, Bussiere, & Sockrider, 2012).

 Figure 1.1: Size of Largest Reported DDoS Attack in Gbps from 2002 to 2012 (Anstee et al., 2012)

Figure 1.1 illustrates the size of DDoS attacks from 2002 to 2012 (Anstee et al., 2012). The

result shows that the size of the attack at the beginning was only 500Mbps. This is no

surprise as there were not many DDoS attack tools available on the Internet and the speed

of the Internet in early 2000 was limited.

However, in 2012, the number of attacks significantly increased to 60Gbps, which was over

120 times higher than the figure in 2002. The most noticeable feature of this graph is that the

largest attack reported was 100Gbps (in 2010). “This was a very significant volume of traffic

and was more bandwidth than some Internet operators had, let alone their customers. This

can be concluded that the attackers are shifting to more advanced threat approaches”

(Anstee et al., 2012).

<1 1 3
10

17
24

40
49

100

60 60

0

20

40

60

80

100

120

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Si
ze

 o
f

D
D

o
S

A
tt

ac
k

[G
b

p
s]

Year

Size of Largest Reported DDoS Attack

Introduction

3

Although the number of DDoS attacks is growing every year, only 37% of the respondents

(130 respondents in total) had developed an increased awareness of the DDoS threat in

their organization, whereas, 63% retained the same level of awareness. Moreover, the report

reveals that more than 10% of the respondents did not have DDoS mitigation capabilities in

their networks (Anstee et al., 2012).

1.3 Impact of DDoS on Business

With the current trends toward data center consolidation and cloud computing, it is essential

to keep up with developments relating to traffic monitoring techniques, DDoS defenses, and

other points of interest regarding data centers. This section discusses the business impact

caused by DDoS attacks in data centers around the world from October 2011 through to the

end of September 2012 (Anstee et al., 2012).

 Figure1.2: Business Impact of DDoS Attacks in Data Center (Anstee et al., 2012)

Figure 1.2 illustrates the impact of DDoS attacks on the business in data centers. The survey

reveals that most data center operators (about 90% of server respondents) reported

operational expenses as a business impact from DDoS attacks. This should come as no

surprise since bandwidth comes at a cost, the failure to meet service-level-agreements

(SLAs) can result in hefty penalties, and attacks can be time-consuming to deal with and

waste valuable resources.

88%

31% 31%
25%

6%

0
10
20
30
40
50
60
70
80
90

100

Operational
Expense

 Customer Churn Revenue Loss Employee
Turnover

 Other

Su
rv

e
y

R
e

sp
o

n
d

e
n

ts
 [

%
]

Business Impact

Business Impact of DDoS Attacks

Introduction

4

One-third of data center operators reported customer churn as a business impact. This also

should come as no surprise since customer confidence in the availability of data center

services can be shaken when the services are not available. As a result, the customers may

feel that it is better to change to a datacenter that has better DDoS attack prevention.

Revenue loss was reported by approximately one-third of the survey responders. According

to the survey, the reasons were because the customers were not required to pay for services

when they were unavailable, and the primary business of the organization is affected by an

attack (Anstee et al., 2012).

1.4 Related Work

In 2006, Pack, et all. evaluated the efficiency of Access Control List (ACL) against DDoS

attacks. The primary tool used to gather legitimate and attacking traffic values was Netflow.

The result showed that the number of ACL rules affected the collateral damage (legitimate

traffic was dropped unintentionally). By using 5 ACL rules, the collateral damage was 45%.

This number significantly reduced to 15% if authors used 50 ACL rules. Interestingly, if the

number of ACL rules used was more than 50, it would increase the collateral damage values

again (Pack, Yoon, Collins, & Estan, 2006).

In 2007, Chen, et all. proposed a unique technique to detect DDoS attacks on networks. The

technique was called Distributed Change Point Detection. This technique detected attacks

by using CAT (Change Aggregation Tree) to monitor the propagation of abrupt traffic

changes inside the network. If traffic exceeded a preset threshold, an attack was identified.

The testbed ran over multiple network domains, which had about 90 routers. There were four

types of DDoS attacks used in this study, which were TCP, UDP, ICMP, and Smurf attack.

The primary tool used to generate the attack traffic was Stacheldraht (Chen, Hwang, & Ku,

2007).

In 2009, Lu, et all. evaluated the impact of a UDP flood attack on a network using a testbed

method. The performance metrics used in this study were the packet loss rate, delay and

jitter. The network consisted of 9 routers and 14 computers with Intel Celeron 2.1 and 512

memory running Linux. Three routers were connected with a 100M switch while the

bandwidth of cables was between 10Mbps to 100Mbps. Iperf was the primary tool used to

generate UDP flood traffic. In terms of experimental results, it showed that the average of

packet loss before the attack was 0% while the delay jitter was 32.3%. However, the packet

loss value during the attack went up to 14.08% while the jitter value slightly decreased from

32.3% to 29.7% (Lu, Gu, & Yu, 2009).

Introduction

5

In 2009, Rui, et all. proposed a UDP flood attack prevention method using Negative

Selection Algorithm. To achieve this, the traffic threshold was set. If the UDP requests were

greater than the threshold, the intrusion detection system would drop packets. The algorithm

also had the ability to check whether the IP addresses came from the same region or not. If

they were from different regions, they were likely to be spoofed IP addresses, and therefore,

there was no reason to forward them to the next process. In addition, the simulation program

in this study was built by .net 2005 and ran in a Windows Server 2003 system, and the total

number of IP addresses tested was 12,960,000 IP addresses (Rui, Li, & Ling, 2009).

In 2011, Rao conducted DDoS experiments based on TCP and UDP flood attacks. The

network environment in this experiment consisted of 4 components: an attacker computer,

legitimate computer, router, and victim computer. A traffic generator called Hyenae was used

to generate the attack traffic, while Netflow and Wireshark were used to monitor the impact

on the server during the attack. There were two defense mechanisms used in this study:

Access Control Lists and Rate Limiting. The results showed that the average RTT of the

server before the attack was 0.834ms, while, during the attack, this number increased to

8.782ms. After using Access Control Lists and Rate Limiting, the average RTT went down to

1.093ms and 6.985ms, respectively. In terms of traffic utilization, the result showed the

average network traffic rate before the attack was constant at 241 Kbps, while, during the

attack, this number significantly went up to 3216 Kbps (Rao, 2011).

In 2011, Mohd, et all. proposed a UDP flood attack defense called Protocol Share Based

Traffic Rate Analysis (PSBTRA). The result from the experiment showed that TCP was the

main protocol used during the normal network operation (at 96.47%). During the UDP flood

attack, however, the main protocol was changed from TCP to UDP (at 85.36%). Based on

this result, the authors developed the UDP flood detection by comparing the proportion of

incoming UDP traffic with the proportion of TCP and ICMP traffic. The detector would drop

UDP packets if the proportion of UDP was greater than the proportion of TCP and ICMP.

The advantage of this solution is that it has low computational overheads, and it can be

applied in the real network environment (Z. Mohd et al., 2011).

In 2011, Arora, et all. evaluated the impact of a UDP flood attack on the network using a

simulation method. The network consisted of 19 nodes in total. Ten nodes were used as

authorized nodes, 5 nodes as routers, 2 nodes for an attacker and victim, and 2 nodes were

used as a server and a control node. UDP was used as an attacking protocol. To evaluate

the impact of the attack, the authors ran legitimate traffic for 40 seconds, then launched the

attack for 10 seconds during that time (Arora, Kumar, & Sachdeva, 2011).

Introduction

6

In 2012, Kaur, et all. conducted an experiment on DDoS attacks using simulation software

called Bonesi. The network in this study consisted of 3 computers: an attacker computer,

legitimate computer, and FTP server. The purpose of this research was to study the impact

of the user throughput between computer nodes before and during a UDP flood attack. The

result showed that the average bandwidth before the attack was around 75 Kbps, while,

during the attacks, the average bandwidth significantly went up to 130 Kbps (Kaur,

Sachdeva, & Kumar, 2012).

1.5 Motivation

The main motivation of this research is to investigate the impact of a UDP flood attack and

provide results using the new generation of Windows and Linux platforms, namely, Windows

Server 2012 and Linux Ubuntu 13. The related works show that little work has been done to

date on the testbed evaluation of these attacks on modern operating systems.

Another motivation is the need to develop suitable solutions to address the rising cases of

DDoS attacks on the computer network. Despite its impacts, there are no effective strategies

to deal with such attacks although they have been in existence for almost a decade (Singh &

Juneja, 2010). As York (2010) observed, many organizations, and government institutions

have fallen victim to DDoS attacks. These organizations have lost consumers, important

data, and some of them have gone out of business because of attacks. Governments have

also lost important national data, impairing their ability to deliver services to the public.

Consequently, an understanding of the characteristics of DDoS can assist in the

development of appropriate security measures and could be used to prevent attacks in the

future.

The recent attacks on numerous banks in America in 2012 also indicated the need to come

up with robust defense mechanisms against DDoS attacks. In that incident, a malicious

hacker circumvented security mechanisms on servers in the financial sector. The attacker

turned them into Zombies to launch attacks on bank websites including Bank of America,

PNC Bank, and U.S. Bank. As a result, the attacks caused outages of websites, online

services, and the operations of the banks for several hours.

The attacks could have been prevented if appropriate security systems had been in place.

All of these examples demonstrate the ineffectiveness of existing security mechanisms to

detect and prevent DDoS attacks, and, as a consequence, are the motivation behind this

research.

Introduction

7

1.6 Research Contribution

This research aims to produce new results that no other researchers have found before.

Previous studies showed there were many researchers who used a simulation method to

carry out their DDoS experiments. However, their methods usually relied on simulation

software to simulate a switch, router, and attacking traffic, which are not realistic

environments and may not be applied on the real network. Many researchers also tried to

propose their DDoS defenses against the attack, however, many did not compare the

efficiency of their solutions with other defenses.

As a result, the purpose of this study is to evaluate the impact of a UDP flood attack on the

new generation of Windows and Linux platforms using a testbed method. This method

allows a researcher to set up a DDoS experiment using real traffic, real hardware, and real

network environment. In this study, many comprehensive parameters were used, e.g., the

user throughput, round-trip time, packet loss, CPU utilization, and jitter. This research also

evaluates and compares the strengths and weaknesses of existing defense mechanisms

such as Access Control Lists, Threshold Limit, Hybrid Method, IP Verify, Network Load

Balancing, and Software Firewall.

1.7 Structure of the Thesis

This thesis consists of eight chapters. Chapter one contains an introduction, which briefly

mentions the history of DDoS attacks, the motivation behind this study, followed by the

contribution of this research. Chapter two provides an overall view of distributed denial of

service attacks including the characteristics of DDoS attacks, different types of DDoS

attacks, and methods of studying DDoS attacks.

The third chapter covers the details of a UDP flood attack, which is the type of DDoS attack

used in this study. This chapter explains the method of a UDP flood attack, and how the

attack exploits the design of UDP protocol. The chapter also reviews UDP flood attack tools,

and the background of the two protocols involved in a UDP flood attack, which are User

Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP).

The fourth chapter covers the hypotheses and the methodology employed for this research.

This chapter also presents the procedures of data collection and the steps involved in the

process of the literature review and the experiment for this research. Chapter five includes a

detailed explanation of the network diagram and the specification of all hardware and

software used in the test lab. This chapter also contains configurations, commands and

monitoring tools used during the test.

Introduction

8

Chapter six covers the evaluation of a UDP flood attack on the webserver using Windows

Server 2012. The metrics used in this study were user throughput, round-trip time, packet

loss, CPU utilization, and jitter. At the end of this chapter, six defense mechanisms results

are described along with comparisons between them. Chapter seven covers the

performance analysis of a UDP flood attack and defenses on Linux Ubuntu 13. Chapter eight

is the final chapter, which covers the conclusion, discussion, and directions for future works.

1.8 Chapter Summary

This chapter described the advantages of the Internet and the security perspective. This

chapter also discussed the impacts of DDoS attacks in past years using the survey

conducted by Arbor networks incorporation in 2012. The final part in this chapter described

related works, the motivation behind this research, and outlined the structure of this report.

The next chapter provides knowledge about Distributed Denial of Service attacks in detail.

9

CHAPTER 2

DISTRIBUTED DENIAL OF SERVICE ATTACKS

This chapter covers the details of distributed denial of service attacks. Section 2.1 explains

the definition of DDoS attacks and the attack methods. Section 2.2 describes the

characteristics and the purpose of DDoS attacks. Section 2.3 covers three categories of

DDoS attacks. Section 2.4 gives the overview of the different types of DDoS attacks. Section

2.5 explains the existing DDoS prevention and defense mechanisms. Section 2.6 describes

five common parameters that can be used to evaluate the impact of DDoS attacks.

2.1 Definition of Distributed Denial of Service Attacks

A Denial of Service (DoS) attack is one of the network attacks which makes resources and

services unavailable to its legitimate users. The main purpose of the attack is to disable the

uses of services on the Internet or the targeted network. Typically, the attack can be

launched either from a local or remote location (Singh & Juneja, 2010).

“Denial of Service” and “Denial of Service Attack” are two completely different concepts; the

former refers to an event or a situation, and the latter refers to an intention-driven illegal act

(Z. Mohd, Idris, Hussain, Stiawan, & Awan, 2011).

A Distributed Denial of Service (DDoS) attack is part of a DoS attack; an attacker launches a

massive number of attack packets from multiple distributed sources to the targeted machine,

which makes it more dangerous than a traditional DoS attack. There are four components

involved in the DDoS attacks:

1. Real Attacker

2. Host Computer or Victim

3. Master Control Program

4. Zombies

The victim is the computer that is chosen for the attack, whereas, the real attacker is the

person who is working behind the method for the attack. Normally, he/she works behind the

shield of the master control program, which makes it harder to trace the attack back to its

true source. The master control program is the interface between the attacker and Zombies.

Distributed Denial of Service Attacks

10

Zombies are computers that have been compromised and used to attack the victim

computer (Singh & Juneja, 2010).

2.2 Characteristics of DDoS Attacks

The DDoS attack is an advanced and upgraded version of the DoS attack both of which

have the same goal, that is, to shut a system down by exhausting the resources of the

targeted network (Oriyano & Gregg, 2010). The following list describes some of the

characteristics of DDoS attacks:

 Attacks of this type are characterized by being very large using hundreds or even

thousands of computers to conduct the attack.

 DDoS attacks have two types of victim, namely, primary and secondary. The former

is the recipient of the actual attack, while the latter are the computers used to launch

the attack itself.

 DDoS attacks can be very difficult to track back to the true source of the attacker

because there are many computers involved, and the attacker can also use spoofed

IP addresses to hide his/her IP addresses.

 Defense is very difficult due to the number of attackers involved. Configuring a

firewall or router to black few IP addresses is possible. However, with the large

number of malicious IP addresses created by thousands of Zombie computers, it is

nearly impossible to identify and block the source of the attack (Ciampa, 2012).

 The impact of the DDoS attack is increased over a standard DoS attack because

many hosts are involved, which multiplies the attack‟s strength and power (Oriyano &

Gregg, 2010).

2.3 Categories of DDoS Attacks

DDoS attacks are not all the same. DDoS attacks can be separated into three broad

categories, depending on how they carry out their goal of denying the service to legitimate

users. The following is a list of DDoS attack categories:

1. Consumption of bandwidth

2. Consumption of resources

3. Exploitation of programming defects

Distributed Denial of Service Attacks

11

2.3.1 Consumption of Bandwidth

Consumption of bandwidth is one of the most common DDoS attacks in computer networks.

The purpose of this type of attack is to exhaust the network bandwidth flowing to and from a

targeted machine. Adding more bandwidth is not a good solution because the attacker does

not have to exhaust the bandwidth of the targeted system entirely, but rather use up so

much of it that performance becomes unacceptable to users (Oriyano & Gregg, 2010). The

following list is an example of well-known forms of attacks in this category. In addition, the

details of these attacks are discussed in Section 2.4.

 Smurf Attack

 UDP Flood Attack

2.3.2 Consumption of Resources

This type of attack is similar to bandwidth consumption. The purpose of the resource

consumption-based attacks is to consume a limited resource such as CPU and RAM. Unlike

bandwidth consumption, the intruder focuses on the resources on a single system, which

causes the service or the entire system to become overloaded (Oriyano & Gregg, 2010). The

following list contains examples of the common forms of this attack. In addition, the details of

these attacks are discussed in Section 2.4.

 TCP and UDP Flood Attack

 Smurf Attack

 Ping Flood Attack

2.3.3 Exploitation of Programming Defects

This type of attack exploits known weaknesses in the system‟s design. Vulnerabilities of this

type may have been exposed due to flaws in the system‟s design that were unintentionally

put in place by the programmers or developers of the system (Oriyano & Gregg, 2010). The

following list is an example of the well-known forms of attack in this category. In addition, the

details of these attacks are discussed in Section 2.4.

 Ping of Death

 ARP Request Attack

Distributed Denial of Service Attacks

12

2.4 Common Types of DDoS Attacks

This section discusses the most common types of DDoS attacks, their characteristics, and

mitigation techniques. These attacks are TCP SYN flood attack (Section 2.4.1), Smurf attack

(Section 2.4.2), Application-Level flood attack (Section 2.4.3), ARP request attack (Section

2.4.4), ICMP flood attack (Section 2.4.5), Ping of Death (Section 2.4.6), and UDP flood

attack (Section 2.4.7).

2.4.1 TCP SYN Flood Attack

The TCP SYN flood attack exploits a vulnerability of TCP 3-way handshake (SYN, SYN-

ACK, and ACK). During the attack, the attacker sends SYN packets with source IP

addresses that do not exist to the targeted computer (e.g., server). When the server stores

the request information into the memory stack, it will wait for confirmation from the client that

sends the request. While the request is waiting to be confirmed, it will remain in the memory

stack.

Because these source IP addresses are spoofed IP addresses, the server will not receive

confirmation packets. Eventually, the requests will accumulate and fill up the entire memory

stack. Figure 2.1 shows the method of a TCP flood attack (Kavisankar & Chellappan, 2011).

Computer A

Computer B

Computer C

Request

Response

Request

Response

Request

Response

Server

Waiting for reply

from B

Waiting for reply

from A

Waiting for reply

from C

 Figure 2.1: Vulnerability of TCP 3-way Handshake (Ciampa, 2012)

Distributed Denial of Service Attacks

13

2.4.1.1 IP Spoofing in TCP Flood Attack

IP Spoofing is used to hide the original IP address of the attacker. This technique allows the

attacker to gain unauthorized access to the network by changing his original IP address to

the IP address of the trusted machine in that network. A TCP flood attack can also be

launched from compromised computers using spoofed IP address, or genuine source IP

addresses, given that the compromised computers used are configured to ignore the

SYN/ACK packets from the target (Kavisankar & Chellappan, 2011).

2.4.1.2 Mitigation Techniques for TCP Flood Attack

A TCP flood attack can be prevented by using the server as the attack detector. To detect

the attack, the SYN request sent by the client will be stored in the database and will wait until

the client sends the acknowledgement (ACK signal) to the server. Information on the client

that is stored in the database consists of the IP address and the SYN count. If the number of

SYN requests exceeds the threshold, it drops the packets from that source IP address

(Kavisankar & Chellappan, 2011).

The network administrator can also use SYN cookies to prevent a TCP flood attack based

on spoofed IP addresses. SYN cookies will not allocate resources until the 3-way handshake

completes. However, one of the disadvantages of this method is that this solution uses huge

computing resources such as the CPU and RAM of the server (Lemon, 2002).

2.4.2 Smurf Attack

The smurf attack is a type of DDoS attack that is designed to exhaust the computer resource

and network bandwidth. According to the ICMP protocol, when a device on the network

receives a “ping” request, it replies to the source IP address with a “pong” message

informing the status of the receiver. The smurf attack exploits the design of ICMP and

TCP/IP. During the attack, the attacker crafts large numbers of ICMP packets with the

intended victim‟s spoofed source IP address, and broadcasts to the computer network

(Wang, 2009).

All devices on the network that have received these broadcast messages will respond with

“pong” messages back to the victim computer. This will exhaust the computing resources of

the victim and associated computers. In addition, the degree of the attack depends on the

number of machines on the network (that receive the broadcast messages) and the attack

packet rates sent by the attacker (Wang, 2009). Figure 2.2 illustrates the smurf attack

methods.

Distributed Denial of Service Attacks

14

VICTIM ATTACKER

PING

PING

PING

PING

PONG

PONG

PONG

PONG

 Figure 2.2: Smurf Attack Methods (Wang, 2009)

2.4.2.1 Mitigation Techniques for Smurf Attacks

The smurf attack can be prevented by using a firewall or a router to filter ICMP packets.

According to Figure 2.2, there are three components involved in the smurf attack: the attack

network, intermediary network, and the victim network. In order to prevent smurf attacks, all

three components must do their part in keeping the attacker out. First, the attacker‟s network

should not allow its users to craft spoofed IP addresses. To achieve this, the firewall needs

to be trained to inspect both ingress and egress traffic. Similarly, the intermediary network

must not be exploited by the attacker for amplifying the malicious traffic (Kumar, 2007).

Another way to protect the network against a smurf attack is to disable the IP directed

broadcast, which is often not needed. In addition, many operating systems can be

configured to prevent the machine from responding to ICMP messages such as the security

capabilities of Windows Service Pack 2 (Kumar, Azad, Gomez, & Valdez).

2.4.3 Application-Level Flood Attack

Traditionally, DDoS attacks are carried out at network layer level, e.g., TCP flood attack, and

UDP flood attack (known as Net-DDoS attacks). The purpose of these attacks is to consume

the network bandwidth and deny service to the legitimate users of the victim systems.

However, when the Net-DDoS attacks fail, the attacker shifts the offensive strategies to

application layer attacks (known as App-DDoS attacks).

Zombies

Distributed Denial of Service Attacks

15

App-DDoS attacks are designed to exhaust the server resources such as CPU, memory,

bandwidth, and disk utilization. This attack occurs when the attacker sends a large number

of queries to the victim‟s database to bring the server down, or attack the webserver by

sending a massive number of HTTP GET requests. App-DDoS attacks on the webserver are

similar to a “flash crowd” which is the situation when many legitimate users access a popular

website simultaneously. As a result, it is difficult to distinguish between legitimate and

attacking traffic (Xie & Yu, 2009).

2.4.3.1 Mitigation Techniques for Application-Level Flood Attack

Client Puzzle Protocol (CPP) is an algorithm that will not allow any abuse of the server

resources. According to this algorithm, any client that wants to establish a connection with

the server has to first correctly solve a mathematical puzzle. After solving the mathematical

puzzle, the client returns the solution to the server and the server will quickly confirm, reject

or drop the connection, based on the client‟s solution (Rajesh, 2013).

2.4.4 ARP Request Attack

In computer networks, media access control addresses (MAC addresses) are used in data

transfer. It is important to convert an IP address to a MAC address in order to communicate

in a LAN. Address Resolution Protocol (ARP) is used for this purpose. When a source wants

to know the MAC address of the destination IP node, it broadcasts the ARP request to every

host in the network. The destination node sends a reply to the source with a MAC address

through ARP reply in a unicast mode. Figure 2.3 shows an example of communication in

LAN using ARP (Vidya & Bhaskaran, 2011).

Distributed Denial of Service Attacks

16

 Figure 2.3: Communication in LAN using ARP (Vidya & Bhaskaran, 2011)

In terms of an ARP request attack, it is an attack situation intentionally created by an

attacker from within the local network. During the attack, the attacker keeps sending a large

number of broadcast packets, with IP addresses within a subnet range or even to IP

addresses not present in the local subnet. The purpose of this attack is to reduce the

bandwidth with unwanted traffic or collect the IP/MAC address details of all machines for

later attacks. In addition, when a network administrator monitors the network traffic using a

network analyzer, he/she will detect a large series of Address Resolution Protocols (Vidya &

Bhaskaran, 2011).

2.4.4.1 Mitigation Techniques for ARP Request Attack

ARP request attacks can be prevented by monitoring the ARP traffic on each LAN segment.

Programs such as SNMP and ARPwatch can be used to monitor changes in ARP tables in a

router, and can switch to raise the alarm for the onset of such ARP attacks. Another way to

prevent these attacks is to set up the traffic threshold for broadcast/multicast traffic on a per-

port basis. In addition, these thresholds on a per-port basis should be set up by limiting the

bandwidth consumed by ARP broadcasts on a switch port (Kumar & Gomez, 2010).

2.4.5 ICMP Flood Attack

ICMP is a part of the TCP/IP suite that is designed to handle error and control messages.

One of the best known examples in practice is the ping utility. It uses ICMP to check remote

hosts for responsiveness, display the round-trip time, or detect the communication failures

between hosts (Bogdanoski & Risteski, 2011).

Distributed Denial of Service Attacks

17

In terms of an ICMP flood attack, the attack overwhelms the targeted computers by sending

a large number of “ICMP Echo Requests” to the targeted computer. The victim receiving

these packets will reply “ICMP Echo Reply” back to the source IP address. As a result, it will

consume both incoming and outgoing bandwidth, and in extreme cases it can disable the

network connectivity (Bogdanoski & Risteski, 2011).

2.4.5.1 Mitigation Techniques for ICMP Ping Flood Attack

ICMP flood attacks can be prevented by blocking the ICMP packets from both incoming and

outgoing traffic. One of the disadvantages is that it may cause issues when using a ping

command to diagnose network problems. Another solution is to block certain types of ICMP

packets or limit the speed of sending ICMP messages from the source. As a result, if

registered ICMP traffic is higher than the threshold, the packets are dropped (Bogdanoski &

Risteski, 2011).

2.4.6 Ping of Death

A ping of death is a type of attack on a computer that involves sending an oversized ping

packet to a computer. According to RFC 791, a correctly formed ping message is typically 56

Bytes in size, or 84 Bytes when the IP header is considered (Exist & Postel, 1981). In the

past, many computer systems could not properly handle a ping packet larger than the

maximum IPv4 packet size of 65,535 Bytes. Larger packets could crash the targeted

computer. Nevertheless, this type of attack would not be harmful to the computer system

today since modern operating systems are all patched against this vulnerability (Erickson,

2008).

2.4.6.1 Mitigation Techniques for Ping of Death

Ping of death can be prevented by adding “checks” in the reassembly process. The check is

used to ensure that the sum of the “Total length” and “Fragment Offset” fields of each IP

fragment is not bigger than the size specified (65,536 Bytes). If the sum is bigger, then the IP

fragment is ignored, and the packet is deemed invalid. In addition, the check can be

performed by firewalls in order to protect the computer systems that have not been patched

against this attack. Another solution for this problem is to use a memory buffer to

reassemble the packet so that it is larger than 65,535 Bytes (Erickson, 2008).

Distributed Denial of Service Attacks

18

2.4.7 UDP Flood Attack

A UDP flood attack in DDoS attacks is a method causing host-based denial of service. It

occurs when an attacker crafts a large number of UDP packets to random destination ports

on a victim computer. The victim computer, on receipt of the UDP packet, would respond

with appropriate ICMP packets if its computer ports are closed. Numerous packet responses

would slow down the system or crash it (Rui, Li, & Ling, 2009). In addition, a UDP flood

attack is a type of DDoS attack used in this study. The details of this attack, including its

characteristics, the attack methods, and attack tools, are discussed in Chapter 3.

2.4.7.1 Mitigation Techniques for UDP Flood Attack

A UDP flood attack can be prevented by identifying the validity of source IP address. One of

the effective solutions is Unicast RPF (Unicast Reverse Path Forwarding). When a router

receives the IP packet, it checks the route table, and confirms whether the route information

of the IP source address for the packet exists. If there is no route information for data return

in the table, it is very likely that the IP source address is forged by the attacker, and then the

router will drop this packet (Rui, Li, & Ling, 2009). In addition, the details of UDP flood attack

defenses are discussed in Section 5.2.

2.5 Classification of DDoS Prevention Mechanisms

DDoS prevention mechanisms can be separated into two categories: general techniques

and filtering techniques. The former involves the system protection of common preventive

measures, while the latter utilizes the router to filter and drop attack packets (Gupta et al.,

2010). The next section discusses general prevention techniques.

2.5.1 General Prevention Techniques

This section details five general prevention techniques that can be implemented against

DDoS attacks on the network. These prevention techniques are disabling unused services

(Section 2.5.1.1), installing latest security patches (Section 2.5.1.2), disabling IP broadcast

(Section 2.5.1.3), firewalls (Section 2.5.1.4), and IP hopping (Section 2.5.1.5).

Distributed Denial of Service Attacks

19

2.5.1.1 Disabling Unused Services

The concept of this technique is to disable network services that are not needed or are

currently unused. Since there are over 60,000 usable ports in a computer, it means, the

fewer the applications and open ports in the hosts, the less likely there is a chance to exploit

vulnerabilities by attackers. This technique is mainly used to prevent attacks such as UDP

flood attacks, TCP flood attacks, and ICMP flood attacks (Gupta et al., 2010).

2.5.1.2 Installing Latest Security Patches

Before attacking the network, the attacker needs to find the vulnerabilities of the targeted

system. These vulnerabilities may be from improper network design, a lack of network

security, or applications being used which have security holes (especially operating

systems). Therefore, it is important that all the relevant latest security patches must be up to

date. Due to the quantity of patches, organizations may use an automated patch update

service to ensure that patches are installed in a timely fashion (Ciampa, 2012).

2.5.1.3 Disabling IP Broadcast

Another way to protect a network from DDoS attacks is to disable IP broadcasts. Some

DDoS attacks such as the smurf attack, exploit this design by sending a broadcast address

with the victim‟s spoofed source IP address to the computer network. All devices on the

network that have received these broadcast messages will respond with “pong” messages

back to the victim computer. This problem can be prevented by disabling the broadcast

function so that an attacker cannot use IP broadcasts as the amplifiers (Chaba, Singh, &

Aneja, 2009).

2.5.1.4 Firewalls

The firewall can be used to protect the machines within the network from the simple flooding

type of attacks. The firewall has simple rules such as to allow or deny protocols, IP

addresses and computer ports. However, the disadvantage of the firewall is that it may not

be able to prevent some complex attacks or prevent attacks on the web service (e.g., the

TCP SYN flood attack). This is because it cannot distinguish between legitimate and

attacking traffic (Gupta et al., 2010).

Distributed Denial of Service Attacks

20

2.5.1.5 IP Hopping

DDoS attacks can be prevented by changing the location or IP address of the active server

proactively within a pool of homogeneous servers or with a pre-specified set of IP address

ranges (Gupta et al., 2010). By doing this, the victim computer‟s IP address is invalidated by

changing it with a new one. Once the IP address change is completed, all Internet routers

will be informed and edge routers will drop the attacking packets. However, the

disadvantage of this solution is that the attacker can launch the attack at the new IP address

(Gupta et al., 2010).

2.5.2 Filtering Defenses Techniques

This section details five filtering defense techniques that can be implemented against DDoS

attacks on the network. These prevention techniques are ingress and egress filtering

(Section 2.5.2.1), history-based IP filtering (Section 2.5.2.2), router packet-based filtering

(Section 2.5.2.3), capability-based method (Section 2.5.2.4), and a source address validity

enforcement (Section 2.5.2.5).

2.5.2.1 Ingress and Egress Filtering

Ingress filtering is an approach to set up an edge router to disallow incoming packets with

illegitimate source addresses into the network. In terms of egress filtering, it is an outbound

filter, which ensures that only valid IP addresses can leave the network otherwise they are

dropped. The key requirement for the filtering techniques is information on the expected IP

addresses at a particular port (Gupta et al., 2010).

Both ingress and egress filtering can be applied not only to IP addresses, but also port

number, protocol type, or any other criteria of importance. However, it is difficult to deploy

ingress/egress filtering universally. If the attacker carefully chooses a network without

ingress/egress filtering to launch the attack, or the attacker spoofs IP addresses from within

the subnet, the attack can go undetected (Gupta et al., 2010).

2.5.2.2 History-Based IP Filtering

History-based IP filtering technique is based on the principle that the set of source IP

addresses during the normal operation tends to remain stable, whereas, during DDoS

attacks, most IP addresses have not been seen before. Based on this idea, this technique

utilizes IP Address Database (IAD) to record frequent source IP addresses. Therefore, if the

source IP address is not in the database, the filter determines that the IP address has been

Distributed Denial of Service Attacks

21

spoofed and drops this packet. One of the disadvantages of this solution is that it cannot

prevent DDoS attacks based on real IP addresses. It also requires an offline database to

keep track of IP addresses. As a result, the cost of storage and information sharing is high

(Gupta et al., 2010).

2.5.2.3 Router Packet-Based Filtering

Router packet-based filtering is an improvement on the ingress filtering technique. It is based

on the principle that each link in the core of the Internet has a limited set of source

addresses. Therefore, if an unexpected source address appears in an IP packet on a link, it

determines that the source address has been spoofed, hence the packet is dropped (Gupta

et al., 2010). However, this scheme has several limitations. The first limitation is that the

router-based filtering technique may drop legitimate packets if a routing table has been

updated or changed. Another limitation is that this technique relies on valid BGP messages

to configure the filter. If an attacker can hijack a BGP session and change BGP messages, it

is possible to mislead routers to update filtering rules in favor of the attacker (Gupta et al.,

2010).

2.5.2.4 Capability-Based Method

The Capability-based method allows the destination to control the traffic directed towards

itself. To achieve this, a router inserts “a mark” in the source packet before sending it to the

destination. The destination can determine whether the packet should be allowed or

dropped. If permission is granted the packet can pass through the network via the router,

otherwise the packet is rejected. Packets that do not have a “mark” are considered as

suspicious packets. One of the benefits of this architecture is that it gives the destination the

ability to control the traffic according to its own policy (Anderson, Roscoe, & Wetherall,

2004).

2.5.2.5 Source Address Validity Enforcement

The Source Address Validity Enforcement (SAVE) is a new protocol that allows routers to

store information on expected source IP packets, and drop incoming IP addresses that are

not in the list. The purpose of the protocol is to inform routers about the scope of the

incoming IP address that should be expected at each interface. To achieve this, SAVE

broadcasts a message that contains valid source address information to all destinations. By

doing this, it allows each router to create an incoming table that associates each link of the

router (Gupta et al., 2010). Nevertheless, the efficiency of this solution depends on the

Distributed Denial of Service Attacks

22

number of SAVE deployments in the networks associated because the attacker may spoof

the IP addresses of the network that do not deploy this protocol (Gupta et al., 2010).

2.6 DDoS Impact Metrics

This section details the five common parameters that can be used to evaluate the impact of

a DDoS attack on the network. In addition, the details of these parameters and an example

of the outputs will be presented in Section 4.3.2.1.

 Throughput

 Round-trip Time

 Packet Loss

 CPU Utilization

 Jitter

2.6.1 Throughput

Throughput is defined as the number of bytes transferred from the source to the destination.

Performance of the throughput between networks can be impacted or affected by some

activities such as the network design, LAN cards, switches, and routers. This metric should

not be used to measure the impact of a DDoS attack in some applications, e.g., video

conferencing, and voice over IP applications, because a high throughput value may still not

satisfy the quality of service required by the user (Mirkovic, Sonia, et al., 2009).

2.6.2 Round-Trip Time

Round-trip time is defined as the interval between the time when a request is issued and the

time when a complete response is received from the destination. This metric is mainly used

to measure the service denial of interactive applications such as web applications, FTP, and

telnet (McCabe, 2010). RTT should not be used to measure the impact of DDoS attacks on

the non-interactive applications (such as email or short message service) since these

applications are insensitive to delay, or they have large thresholds for acceptable request

and response delay (Mirkovic, Sonia, et al., 2009).

Distributed Denial of Service Attacks

23

2.6.3 Packet Loss

Packet loss is defined as the number of packets or bytes lost due to the interaction of the

legitimate traffic with the attack, or due to collateral damage from a defence‟s operation

(Yaar, Perrig, & Song, 2004). The loss metric primarily measures the presence and extent of

congestion in the network due to flooding attacks, but cannot be used for some attacks that

do not congest network resources or do not continually create congestion, e.g., Ping of Dead

attack (Mirkovic, Sonia, et al., 2009).

2.6.4 CPU Utilization

CPU utilization is the percentage of a computer‟s CPU resource taken during the processing

of an application or a task. Some types of DDoS attacks, such as TCP flood attack, UDP

flood attack, and Smurf attack, are designed to exhaust the victim‟s CPU resource (Oriyano

& Gregg, 2010).

2.6.5 Jitter

Jitter or packet delay variation is the variation in the time between packets arriving, which

can be caused by timing drift, route changes, or network congestion. Some types of DDoS

attacks, such as UDP flood attack and smurf attack, can significantly increase jitter values. In

addition, high jitter values can impact the performance of some applications, e.g., voice over

IP, online games, and video conference applications (Marti, Fuertes, Fohler, &

Ramamritham, 2001).

2.7 Chapter Summary

This chapter reviewed the background of DDoS attacks including the characteristics, and

different types of DDoS attacks. The different types of DDoS prevention mechanisms were

also discussed. These mechanisms can be separated into two categories: general

techniques and filtering techniques. The former involves the system protection of common

preventive measures, while the latter utilizes the router to filter and drop attack packets. The

final section covered five common parameters used to evaluate the impact of DDoS attacks.

The next chapter provides the details of a UDP flood attack, which is the type of DDoS

attack used in this study.

24

CHAPTER 3

UDP FLOOD ATTACK

This chapter covers the details of a UDP flood attack, which is the type of DDoS attack used

in this study. Section 3.1 provides the definition of a UDP flood attack. Section 3.2 describes

the characteristics of a UDP flood attack, and how the attack exploits the design of a UDP

protocol. Section 3.3 describes a technique that can be used to hide the true source of the

attack. Section 3.4 explains the method of a UDP flood attack using Zombies. Section 3.5

covers several types of UDP flood attack tools. Section 3.6 covers a brief description of the

two protocols involved in a UDP flood attack.

3.1 Definition of a UDP Flood Attack

A User Datagram Protocol (UDP) flood attack in DDoS attacks is a method causing host-

based denial of service. It occurs when an attacker crafts numerous UDP packets to random

destination ports on a victim computer. The victim computer, on receipt of the UDP packet,

would respond with appropriate ICMP packets if one of these ports is closed. Numerous

packet responses would slow down the system or crash it (Rui, Li, & Ling, 2009).

Both TCP and UDP flood attacks are categorized as high rate flood attacks because they

are launched by flooding a massive amount of TCP or UDP datagrams to overwhelm the

victim computer. However, the difference between them is that the former intends to

consume the victim computer‟s resources (e.g., CPU) while the goal of a UDP flood attack is

to exhaust the connection bandwidth. This makes a UDP flood attack more severe than a

TCP in terms of its ability to cause more degradation of the legitimate traffic bandwidth

(Mirkovic, Hussain, Fahmy, Reiher, & Thomas, 2009).

3.2 Characteristics of a UDP Flood Attack

A UDP flood attack exploits the generic design of UDP protocol behavior. Unlike TCP, UDP

is a connectionless protocol and does not involve 3-way handshaking functionality as in

TCP. During the attack, a large number of UDP packets are sent to either random or

specified ports on the victim computer. Typically, this attack is designed to attack random

victim ports. When the victim computer receives a UDP packet, it will determine which

application is waiting on the destination port. If there is no application that is waiting on the

UDP Flood Attack

25

port, the victim computer will generate an ICMP packet of „„destination unreachable‟‟ to the

forged source address. If enough UDP packets are delivered to ports of the victim, the

targeted computer will go down (Singh & Juneja, 2010).

 Figure 3.1: UDP Behavior Analysis to Closed Ports (Singh & Juneja, 2010)

Figure 3.1 shows an example of UDP behavior to closed ports. The victim computer will

respond with an ICMP message, every time a UDP request is received on a closed port

(Singh & Juneja, 2010). For example, the attacker sends the UDP packet to the destination

port (port 5001) on the victim computer. If this port is closed, the victim computer will

respond by sending an appropriate ICMP packet back to the attacker computer (ICMP

destination unreachable). The attacker will keep sending UDP packets to other computer

ports of the victim (ranging from 1 – 65535) and the victim system, on receipt of the UDP

packets has to respond with ICMP packets if one of these ports is closed.

3.3 UDP Flood Attack using Spoofed IP Address

IP spoofing is a technique that involves replacing the IP address of an IP packet's sender

with another machine's IP address. This technique is most often used in distributed denial of

service attacks, and especially in a UDP flood attack. In such an attack, the goal is to flood

the victim computer with overwhelming UDP packets, and the attacker does not care about

receiving responses to the attack packets (Singh & Juneja, 2010).

Packets with spoofed addresses are thus suitable for such an attack. They have many

advantages for this purpose. For example, they are more difficult to filter because each

spoofed packet appears to come from a different IP address, and these spoofed addresses

UDP Flood Attack

26

also hide the true source of the attack. Moreover, when multiple compromised computers

are participating in the attack, all sending spoofed traffic, it is very difficult to distinguish the

difference between legitimate and attacking traffic (Singh & Juneja, 2010).

 Figure 3.2: UDP Flood Attack using Spoofed IP Addresses (Singh & Juneja, 2010)

Figure 3.2 illustrates an example of a UDP flood attack using spoofed IP addresses. It shows

that many UDP packets are sent from random source IP addresses to different port

numbers. For example, the attack replaces his/her IP address (192.168.1.1) with a spoofed

IP address (128.111.10.1) and sends the UDP packet to the destination port (port 5001) on

the victim computer. If this port is closed, the victim computer will respond with an ICMP

packet back to the spoofed IP address indicating that the port is closed. The attacker will

keep changing his IP address and destination ports, and the victim computer, on receipt of

the UDP packets, has to respond by sending ICMP packets back to the forged source

addresses.

3.4 Mechanism of UDP Flood Attack using Zombies

There are four components involved in a UDP flood attack using Zombies: a victim

computer, a real attacker, a master control program, and Zombies or Daemons. The victim is

the computer that is chosen for the attack, whereas, the real attacker is the person who is

working behind the method for the attack. Normally, he/she works behind the shield of the

master control program, which makes it harder to trace back to it. The master control

UDP Flood Attack

27

program is the interface between the attacker and the Zombies. Zombies are computers that

have been compromised and used to attack the victim computer.

 Figure 3.3: Mechanism of UDP Flood Attack using Zombies (Singh & Juneja, 2010)

Figure 3.3 illustrates the mechanism of a UDP flood attack using Zombies. A UDP flood

attack occurs when the attacker sends the attack command, the victim‟s IP address, attack

methods, and the attack duration to a master control program. The master control program

then forwards the attack instruction to their agents, which may be either Zombies or

Daemons (compromised computers). The difference between Zombies and Daemons is that

Daemons will be used in the direct attack method, whereas, Zombies will be used in the

reflector method. In addition, the direct attack method is when the attacker arranges to send

out a large number of UDP packets directly toward the victim computer. On the other hand, a

reflector attack is an indirect attack in that intermediary nodes (e.g., routers) are innocently

used as attack launchers (Chang, 2002).

On receiving the attack instruction from the attacker, Zombies start sending UDP packets

including port numbers to the victim computer. When the victim computer receives the

packets, it sends ICMP packets back to those Zombies indicating that the port is closed.

Zombies will keep sending UDP packets to the victim computer until all its resources have

been consumed (Singh & Juneja, 2010).

Multiple Zombies are under the control of each master control program and even the

masters can be multiple, which leads to a large number of UDP packets being delivered to

the victim computer. This ensures flooding the system by consuming the entire bandwidth

and other resources (Singh & Juneja, 2010).

UDP Flood Attack

28

3.5 UDP Flood Attack Tools

One of the main reasons that makes DDoS attacks difficult to prevent is the simplicity and

power of attack tools (Yaar, Perrig, & Song, 2004). In the past, an attacker needed to have

technical knowledge of attack tools before they could be used. Today, however, many attack

DDoS tools are freely available and do not require any technical knowledge. The following

sections describe two UDP flood attack tools, which are the agent-based and IRC-based

types (Douligeris & Mitrokotsa, 2004).

3.5.1 Agent-based Attack Tools

This section covers the agent-based UDP flood attack tools. Examples of the attack tools are

Trinoo (Section 3.5.1.1), Tribe Flood Network (Section 3.5.1.2), TFN2K (Section 3.5.1.3),

Shaft (Section 3.5.1.4), and Mstream (Section 3.5.1.5).

3.5.1.1 Trinoo

Trinoo is a bandwidth depletion attack tool that can be used to launch a UDP flood attack

against one or many IP addresses. The attack uses constant-size UDP packets to target

random ports on the victim computer. Typically, Trinoo agents need to be installed on the

compromise machines (Zombies) first. This allows the attacker to remotely compile and run

the attack via Zombies. The handler is used as an intermediary between the real attacker

and Zombies, which is done via UDP packets (Douligeris & Mitrokotsa, 2004).

3.5.1.2 Tribe Flood Network

Tribe Flood Network (TFN) is an attack tool that provides an attacker with the ability to

exhaust both the resources and bandwidth of a targeted machine. Communication between

the attacker and the control master program is done via a command line interface but with

no encryption between them. In addition, TFN uses ICMP packets to communicate between

the handler and the Zombies which makes it harder to detect an attack, and attacks can

often be overlooked by a firewall. TFN can implement different types of attacks including

UDP, and Smurf attacks (Douligeris & Mitrokotsa, 2004).

3.5.1.3 TFN2K

TFN2K is a more advanced version of TFN. TFN2K adds many features including the

encrypted messaging between all of the attack components (using CAST-256 algorithm). It

also has the ability to hide the detection from intrusion detection systems. TFN2K can

UDP Flood Attack

29

generate different types of DDoS attacks including UDP flood attacks, ICMP flood attacks,

and Smurf attacks. An advantage of TFN2K is that the protocols used to communicate

between attack components can be random during the attack, which makes it harder to

detect the attack by scanning the network (Douligeris & Mitrokotsa, 2004).

3.5.1.4 Shaft

Shaft is an advanced version of Trinoo, which enables an attacker to communicate with the

handlers via a TCP telnet connection. An advantage of Shaft is the ability to combine

different types of attacks into one attack, e.g., to change between TCP, UDP, and ICMP

flood attacks. A distinctive feature of Shaft is the ability to change the attacker‟s IP address

and port in real-time during the attack, hence making detection by the firewall more difficult.

Besides, Shaft also provides statistics on the flood attack. The statistics are used by the

attacker to know when the victim system is completely down and allows him/her to know

when to stop adding Zombies to DDoS attacks (Douligeris & Mitrokotsa, 2004).

3.5.1.5 Mstream

Mstream provides a simple point-to-point UDP flood attack that can obstruct the function of

tables used by fast routing routines in switches. TCP and UDP packets are used as the main

protocols for communication between attack components; however, they do not provide

encrypted messaging between them. The advantage of Mstream is that the master machine

can be controlled remotely by multiple attackers using a password-protected interactive

login. This tool can also inform all connected attacks whether access to the program has

been successful or not (Douligeris & Mitrokotsa, 2004).

3.5.2 IRC-based Attack Tools

Internet Relay Chat (IRC) based DDoS tools were developed after the agent handler attack

tools and as a result, IRC-based tools are more sophisticated. They combine many of the

advantages and distinctive features that can be found in the previous generation of attack

tools. Examples of IRC-based tools include Trinity (Section 3.5.2.1) and Knight (Section

3.5.2.2).

UDP Flood Attack

30

3.5.2.1Trinity

Trinity is an IRC-based DDoS attack tool that can generate different types of DDoS attacks

such as UDP flood and TCP flood attacks. Before launching an attack, each Trinity

compromise machine needs to join a specified IRC channel and waits for commands. By

using the legitimate IRC service for communication between the attacker and Zombies, it

eliminates the need for a master machine and elevates the level of the threat (Douligeris &

Mitrokotsa, 2004).

3.5.2.2 Knight

Knight is a lightweight and powerful IRC-based DDoS attack tool that provides different

types of DDoS attacks including UDP flood and TCP flood attacks (Gupta et al., 2010).

Knight is designed to run on Windows operating systems, and has features such as a

checksum generator, and an automatic updater via HTTP or FTP. In addition, the Knight tool

is typically installed by using a Trojan horse program (Douligeris & Mitrokotsa, 2004).

3.6 Protocols involved in a UDP Flood Attack

This section gives a description of two protocols involved in UDP flood attacks, namely, UDP

and ICMP. This section also provides a brief description of TCP. In this study, TCP was used

as legitimate traffic, and used to compare it with attacking traffic. Therefore, knowledge of

these protocols is required.

3.6.1 User Datagram Protocol

The User Datagram Protocol (UDP) was designed by David Patrick Reed in 1980 (Sosinsky,

2009). It is one of the members of the Internet Protocol suite used for sending messages

between hosts on the IP network. Unlike TCP, UDP is an unreliable protocol, which uses a

simple transmission model with a minimum of protocol mechanisms and it does not attempt

to ensure the validity of the data that is sent. However, this protocol provides checksums for

data integrity, and port numbers of the source and destination for addressing different

functions (Sosinsky, 2009).

UDP does not maintain the overhead, therefore, it can transfer information faster than TCP

(Kurose & Ross, 2010). This makes UDP suitable for applications that do not require

reliability, e.g., voice, music, and video applications. UDP is often used in both time-sensitive

and real-time applications since dropping packets is preferable to waiting for delayed

packets in both applications (Kurose & Ross, 2010).

UDP Flood Attack

31

A number of UDP‟s characteristics make it suitable for certain applications, including:

 It provides datagrams, which is suitable for modeling other protocols such as

Network File System (NFS) and IP tunneling.

 It is transaction-oriented, which is suitable for simple query-response protocols such

as Network Time Protocol (NTP) and Domain Name System (DNS).

 It is stateless, which makes it suitable for large numbers of clients such as in

streaming media applications.

 It is simple, which is suitable for bootstrapping such as Dynamic Host Configuration

Protocol (DHCP).

 The lack of retransmission delays makes it suitable for time-sensitive applications

such as video conferencing and Voice over IP.

 It is compatible with unidirectional communication which makes it suitable for

broadcast and shared information such as service discovery and broadcast time.

3.6.1.1 UDP Packet Structure

UDP datagrams use a simple message format. There are two features found in the

datagram: integrity verification, and multiplexing. The former is used to determine the validity

of the datagram while the latter is used for transmission of multiple data streams for

applications that support this attribute.

The UDP header consists of four fields, each of which has sixteen bits. The use of the fields

called “Source port” and “Checksum” is optional when IP version 4 is used, but “Checksum”

is required for IP version 6 (Sosinsky, 2009). Table 3.1 shows the structure of a UDP

datagram:

Offsets

Octet

0

1

2

3

0 Source port Destination port

4 Length Checksum

 Table 3.1: Structure of a UDP Datagram (Sosinsky, 2009)

UDP Flood Attack

32

Source port number

A source port number is an optional field which is used to identify the sender‟s port or the

port number that needs to reply back. In case this field is not used, a value of zero is

inserted. In addition, if the source host is a server, the port number is likely to be a common

port number, while the port number tends to be an ephemeral port number if the source host

is a client (Forouzan, 2000).

Destination port number

A destination port number is used to indicate the receiver‟s port. If the source host is a

server the port number is likely to be used by common protocols that are in the range of 0 to

1023 (Sosinsky, 2009). If the source host is a client, the port number tends to be an

ephemeral port number. In addition, this field is required in both IPv4 and IPv6 (Sosinsky,

2009).

Length

This field specifies the length in octets of the user datagram including the UDP data and

UDP header. The practical limit for the data length in IP version 4 is 65,507 Bytes (Sosinsky,

2009). In IP version 6, however, it is possible to have UDP packets of a size greater than this

number. In addition, if the UDP data and UDP header is greater than 65,535 Bytes, the

length field is set to zero (Sosinsky, 2009).

Checksum

This field is used to check errors in both the header and data. If no checksum is generated,

the value is set to all zeros. The checksum is useful when the datagram needs to pass over

unreliable links. In addition, this field is optional when IP version 4 is used, but it is required

for IP version 6 (Loshin, 2003).

3.6.1.2 Comparison of TCP and UDP

TCP stands for Transmission Control Protocol. It is one of the members of the Internet

protocol suite that provides connection-oriented, end-to-end, and reliable inter-process

communication between hosts (Loshin, 2003). The following list describes some of the

advantages of TCP:

UDP Flood Attack

33

 Reliable: TCP is designed to be resilient even when data received is damaged, out

of order, or it receives data more than one. In the case of multiple time-outs, the

connection is dropped, or if data get lost during transmission, the server will request

the lost part again.

 Ordered: Unlike UDP that imposes a structure on their data, TCP utilizes a “byte

stream service” which allows data to be delivered in order. For example, if two data

segments are sent in sequence, the first data segment will reach the destination first.

If data segments arrive in the wrong order, it uses a buffer to wait until all data are

properly delivered.

 Heavyweight: TCP is a reliable protocol, which uses three packets to set up a

socket connection before data are transmitted (known as a three-way handshake).

The steps involved in a three-way handshake are: synchronize, synchronize –

acknowledge, and acknowledge.

 Streaming: TCP is a stream-oriented protocol, which allows data to be read in the

form of a byte stream. TCP uses a reliable stream known as a “byte stream service”

to deliver data to the destination, and it ensures that all bytes received will be

identical and in the correct order (Loshin, 2003).

In terms of UDP, it is a connectionless protocol, which does not require a dedicated end-to-

end connection. Communication is achieved by sending data from the source to the

destination regardless of the state of the receiver. Nevertheless, the main advantage of this

protocol is that it is suitable for real-time applications such as video conferencing, VoIP, and

online games.

UDP is also suitable for applications in which loss of the packet is not important. For

applications that need a high degree of reliability, such as mission-critical applications, a

protocol such as TCP may be considered. UDP-based applications do not normally have

good congestion avoidance and control mechanisms. In addition, these applications

frequently give an inelastic bandwidth load which can consume the available bandwidth on

the network, especially on the Internet (Rahman, Saha, & Hasan, 2012). The following list

explains the features of UDP:

 Unreliable: There is no mechanism of acknowledgement, retransmission, and time-

out. When data are sent, it cannot be checked whether it will reach its destination, or

whether data was lost during the process.

 Not ordered: If two data segments are sent to the same destination in sequence, the

order in which they arrive can be different.

UDP Flood Attack

34

 Datagrams: UDP provides no congestion control mechanisms. This protocol allows

applications to send UDP datagrams at the same rate of the link interface, which is

normally much higher than the available path capacity. As a result, it can cause

congestion collapse at choke points in the network.

 Lightweight: UDP was designed as a “lightweight” protocol. It does not have the

ability to track connections between hosts, and it does not allow data to be delivered

in order. Table 3.2 summarizes the attributes of TCP and UDP:

Attribute TCP UDP

Reliability Reliable Unreliable

Connection Management Connection-oriented Connectionless

Transmission Byte-oriented Message-oriented

Fault Tolerance No No

Congestion Control Yes No

Flow Control Yes No

Security Yes Yes

Data Delivery Strictly Ordered Unordered

 Table 3.2: Comparison Between TCP and UDP

3.6.2 Internet Control Message Protocol

This section describes the Internet Control Message Protocol (ICMP) which is the protocol

used during a UDP flood attack process. Therefore, an understanding of the attributes of this

protocol is required. ICMP is part of the Internet protocol suite that provides feedback and

error messages during network operations. These messages help the network

administrators to analyze the current state of the network as well as diagnosing network

connectivity problems (Bruce, 2011). The following section discusses the ICMP destination

unreachable, which is the type of ICMP message used during a UDP flood attack.

3.6.2.1 ICMP Destination Unreachable

Destination unreachable (Type 3) is generated by the host to inform the client that the

destination is unknown. For example, when the router is missing the information that allows

a packet to be forwarded, the source host will receive the ICMP message Type 3

(destination unreachable). This is a common occurrence when the router does not have the

destination address in a routing table. There are several ICMP codes for destination

unreachable but the most common type during a UDP flood attack is code three, which is a

destination port unreachable message (Bruce, 2011). During a UDP flood attack, when the

UDP Flood Attack

35

attacker sends UDP packets to the destination ports on the victim computer, if one of these

ports is closed, the victim computer will respond with ICMP destination unreachable

messages back to the attacker computer (Singh & Juneja, 2010).

3.7 Chapter Summary

This chapter described the details of UDP flood attacks, which is the type of DDoS attack

used in this study. This attack occurs when an attacker crafts numerous UDP packets to

random destination ports on a victim computer, and the victim, on receipt of UDP packets,

has to respond with ICMP packets if one of these ports is closed. This chapter also

explained the technique called IP spoofing, which is the technique used by the attacker to

hide his/her IP address, and to make the attack packets appear to come from different

source locations. The method of UDP flood attacks using Zombies was also discussed,

which is a technique used by an attacker to multiply the attacks. This chapter also described

the functionality of UDP flood attack tools, which are divided into two categories: agent-

based and IRC-based. The last section covered a description of the two protocols involved in

UDP flood attacks, namely, UDP and ICMP.

The next chapter covers the methodologies and techniques employed in this study.

36

CHAPTER 4

METHODOLOGY

This chapter covers the methodologies and techniques employed in this study. Section 4.1

describes the hypotheses used in this research. Section 4.2 explains the three broad types

of methodologies, then focuses on the quantitative approach, which is the methodology used

in this study. This section also covers the evaluation methods that can be used to evaluate

the impact of DDoS attacks on a network. Section 4.3 covers two types of data collection

processes, the literature review process, and the experimental data gathering process. A

brief discussion in regard to the analysis techniques that were used to carry out this study is

also provided.

4.1 Research Hypothesis

Hypothesis is the process which gives a clear scope of the elements presented in the

research, and it was used as the key driver that forms the experiments in order to produce

the result of this study. Following are the research hypotheses that used to manage the

research activities and tasks:

 It is expected that the performance of the webserver will reduce during the UDP flood

attack.

 It is expected that CPU, RAM, and Disk utilizations on Windows Server 2012 and

Linux Ubuntu 13 will increase during the UDP flood attack.

 It is expected that different UDP packet sizes (attack packet) will increase the packet

loss and the delay value.

 It is expected that different packet rates (attack packet) will increase the packet loss

and the delay value.

4.2 Method Used for Study

There are three broad types of methodologies used to manage a research study: qualitative

research, quantitative research, and mixed method research (Case & Light, 2011).

According to Daniel Muijs, quantitative research involves gathering numerical data and using

mathematically-based methods to explain phenomena or research questions (Muijs, 2011).

In addition, there are two main types of quantitative research designs:

Methodology

37

experimental designs and non-experimental designs. The former involves the test and

numerical statistics, while the latter includes the survey-based information (Charvat, 2003).

The main methodology used in this study was based on the quantitative approach in which

all data used in the analysis process were from the results of the experiment. There were

three main processes used to evaluate the impact of a UDP flood attack on the network. The

first process was to identify the performance of the network before the UDP flood attack. The

second process was to identify the performance of the network during the attack. The final

process was to evaluate the performance of the network after using DDoS defenses. The

details of the evaluation process will be explained in Section 4.3.2.2.

4.2.1 DDoS Attack Evaluation Methods

A DDoS attack evaluation method is the methodology used to study the impact of a DDoS

attack on a computer network. The most common DDoS evaluation methods are broken into

three categories: Simulation, Testbed, and Theory (Mirkovic, Sonia, Reiher, & Thomas,

2009). The following section describes the advantages and disadvantages of each method.

In addition, Testbed was an evaluation method used in this study.

4.2.1.1 Simulation

Simulation is an attempt to model a hypothetical situation on a computer so that it can be

studied to see how the system works. This method is very popular for analyzing network

performance questions. Most simulation software provides simple router models but some of

them (such as OPNET) provide several models of switches, routers, and servers based on

vendor specifications (Mirkovic, Sonia, et al., 2009). Nevertheless, one of the disadvantages

of a simulation method is that it may unintentionally increase CPU and RAM utilization of the

testing computer.

4.2.1.2 Testbed

Testbed is one of the evaluation methods used in this study. Testbed gives the most realistic

environment, which allows researchers to set up DDoS experiments using real traffic and

attack methods. Testbed gives access to a desired number of computers, located at a

central facility and isolated from the Internet, and it also offers realistic parameters such as

delays, packet loss, and user throughput (Mirkovic, Sonia, et al., 2009). Testbed provides a

more realistic evaluation environment than simulation for many reasons, including:

Methodology

38

 Real operating system, applications, and hardware are used in testing.

 DDoS and legitimate traffic can be generated in several ways.

 Many router choices exist in Testbed, including Cisco and Juniper routers which

allow realistic forwarding behavior.

4.2.1.3 Theory

Theory method is suitable for answering questions about situations that can be accurately

represented by existing models. In the DDoS experiment, theory may be useful to evaluate

the robustness of a given defense to cheating or a direct attack. Both require some

guesswork on the attacker‟s part, the success of which can be evaluated via theory.

This approach is also useful in answering specific questions about a defence‟s scalability,

cost and delay. However, these attributes depend on the defence‟s design, and whether or

not parts of it can be accurately represented by simple models. Generally, the theory

approach is not suitable for effectiveness evaluation (Mirkovic, Sonia, et al., 2009).

4.3 Data Collection Process

This section describes the data collection process, which was used to obtain the data for this

study. There were two types of data collection methods in this research: the literature review

and an experimental data gathering process. The former provides both the knowledge and

information needed for the research. Searching for the literature was mainly based on

journals, conference papers, books and other credible sources from the Internet. In terms of

the experimental data gathering process, it was carried out using multiple tests in the

computer laboratory.

4.3.1 Literature Review Process

The literature review is the initial process that enhances the researcher intellectually while

reading and analyzing other‟s relevant works. It also provides the knowledge base,

background, and information needed for this study. In this research, all literature was

gathered from different credible resources such as academic databases, academic peer-

reviewed journals, library references, and appropriate credible association websites. Table

4.1 is an example of the credible resources, where information for this research was

retrieved.

Methodology

39

Resources From

Academic Database IEEEXplore, ACM, and EBSCO HOST

Books Unitec library, and Google Book

Web Search Engine Google scholar

 Table 4.1: Credible Resources

The resources mentioned in Table 4.1 led to research papers relevant to the study, as they

are well-known and credible for information technology-based research. After the literature is

reviewed and critically analyzed, it leads to the next process which is information gathering

from the testbed. The following sections describe the experimental data gathering process,

which explains how the data were collected and analyzed.

4.3.2 Experimental Data Gathering Process

The main resource for data gathering for this research was the collection of data from the

tests. To achieve this, a network was set up in the computer laboratory, and numerous tests

were run in order to get accurate results. In this process, there were five different types of

data used to measure the impact of a UDP flood attack on the network. They were CPU

utilization, round-trip time, packet loss, jitter, and user throughputs, all of which were

collected by using appropriate tools. Table 4.2 shows the DDoS impact metrics and the tools

used in the data gathering process. In addition, the process of collecting this data will be

explained in the next section.

DDoS Impact Metrics Tools Used For Collecting Data

CPU utilization Microsoft Resource Monitor

Round-trip time TCPing

Packet loss Iperf

Jitter Iperf

User throughput Iperf

 Table 4.2: DDoS Impact Metrics and Tools Used For Collecting Data

4.3.2.1 DDoS Impact Metrics

This section describes the performance metrics that were used in the analysis process

(Chapter 6 and Chapter 7). The following is a list of the five common parameters that have

been used by many researchers to evaluate the impact of DDoS attacks on networks

(Mirkovic, Sonia, et al., 2009).

Methodology

40

CPU Utilization

The primary tool used to collect the CPU utilization was Microsoft Resource Monitor. In this

study, the CPU usage was collected in three phases: before the attack, during the attack,

and after using solutions. In terms of the CPU utilization before the attack, the CPU usage

was recorded on the victim computer for 5 minutes (30 runs) without any other running

process. Regarding CPU utilization after the attack, CPU monitoring software was run before

launching the UDP flood attack. By doing this, the impact of the attack can be seen at the

beginning. Figure 4.2 illustrates the CPU utilization output from Microsoft Resource Monitor.

 Figure 4.1: Example of CPU Utilization Output from Microsoft Resource Monitor

Round-trip Time

The primary tool used to collect the RTT was TCPing ("Ping over a TCP Connection", 2013).

It was done in order to analyze the delay between a legitimate computer and the webserver.

RTT was collected in three phases: before the attack, during the attack, and after using the

solutions. In each scenario, it was run 30 times for 5 minutes. In terms of the RTT before the

attack, the RTT was collected during the normal network operation and without any other

running process. Regarding the RTT after the attack, the RTT was collected during the UDP

flood attack. Figure 4.3 illustrates an example of round-trip time output (1 run) using TCPing.

The details of this tool are also explained in Section 5.3.3.

Methodology

41

 Figure 4.2: Example of Round- trip Time Output from TCPing

Packet Loss

The primary tool used to collect packet loss values was Iperf (Openmaniak, 2009). It was

done in order to analyze the relationship between the attack packet size and legitimate

packet loss value. The sizes of attack packets were 64, 128, 256, 512, 1024, and 1280

Bytes per packet. These sizes include the maximum and minimum frame sizes permitted by

the Ethernet standard (Bradner & McQuaid, 1999). Packet loss value was collected in three

phases: before the attack, during the attack, and after using the solutions. For each

scenario, it was run 30 times to calculate an average and standard deviation. Figure 4.4

illustrates an example of packet loss values using Iperf. The detail of this tool is also

explained in Section 5.3.1.

Methodology

42

 Figure 4.3: Example of Packet Loss Output from Iperf

Jitter

The primary tool used to collect jitter values was Iperf. The test was done in order to analyze

the legitimate delay variation when using the different attack packet sizes. The sizes of

attack packets were 64, 128, 256, 512, 1024, and 1280 Bytes per packet, each of which was

run for 30 times to calculate the maximal, minimum and average values. Figure 4.5

illustrates an example of jitter using Iperf.

 Figure 4.4: Example of Jitter Output from Iperf

Packet Loss

Jitter

Methodology

43

User Throughput

The primary tool used to collect the throughput values was Iperf. It was used in order to

analyze the number of user throughputs between the client and server. There were two

types of user throughputs in this study, namely, TCP and UDP. Both of them were collected

in three phases: before the attack, during the attack, and after using the solutions. For each

scenario, it was run 30 times to calculate an average and standard deviation. Two

computers needed to have Iperf installed; one was the victim computer, and the other the

monitoring computer (legitimate computer). Figure 4.6 illustrates an example of UDP

throughputs using Iperf.

 Figure 4.5: Example of UDP Throughputs Output from Iperf

4.3.2.2 UDP Flood Attack Evaluation Process

There were 3 main processes were used to evaluate the impact of a UDP flood attack on the

network. The first process was to identify the performance of the network before a UDP flood

attack. The second process was to identify the performance of the network during the attack

and, the final process was to evaluate the performance of the network after using the DDoS

defenses. The following sections explain the steps involved in each process.

UDP Throughput

Methodology

44

Process of Generating Legitimate Traffic

In order to identify the performance of the network before a UDP flood attack, legitimate

traffic was required. To achieve this, software called Webserver Stress Tool was used

(Webstress, 2014). This software can simulate legitimate users who want to access the

webserver, and therefore we can identify legitimate traffic. In this study, the number of

legitimate users was 10 users, and the test was run 30 times using Window Server 2012 and

Linux Ubuntu 13. This generated traffic at approximately 4.4 packets per second. During this

time, CPU utilization, delay, jitter, packet loss, and user throughput values were collected,

and used to compare with the same parameters during the attack. In addition, the detail of

Webserver Stress Tool is explained in Section 5.3.4.

Process of Generating Attack Traffic

The primary tool used to generate the attack traffic was Hping3 (Hping, 2014). In this study,

an attack rate of 13000 packets per second and a packet size of 512 Bytes per packet were

used to attack the targeted network. This generated attack traffic at approximately 50.7

Mbps. These were the maximum values that the victim computer could withstand, and we

would not have been able to measure traffic (e.g., RTT) if the packet rate and packet size

had been higher than those values. During the UDP flood attack, CPU utilization, delay,

packet loss, and user throughput values were collected, and used to compare with legitimate

traffic. In addition, the detail of Hping3 is also explained in Section 5.3.5.

Process of Evaluating Defenses

Six defense mechanisms were used against the UDP flood attack, namely, Access Control

Lists, Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and the Software

Firewall. After implementing each solution, a UDP flood attack was launched again. The

efficiency of defense was evaluated by comparing the number of CPU utilization, delay, jitter,

packet loss, and user throughput values before and after using the solutions. In addition, the

detail of defense mechanisms and the network set up will be explained in Section 5.2.

Methodology

45

4.4 Chapter Summary

This chapter covered research hypotheses, methodology of study, and data collection

process. The pre-defined hypotheses showed the scope or the boundary of this research,

while a quantitative research method was selected as the main methodology and used to

manage the research from beginning to end. A testbed was set up to gather quantitative

data. This chapter also detailed the most common DDoS evaluation methods, which are

simulation, testbed, and theory. In addition, the testbed method was selected as an

evaluation method since it provided a more realistic evaluation environment compared to the

simulation and theory methods. The end of this chapter presented the procedures of data

collection, and the steps involved in the process of both the literature review, and the

experiment for this research, with examples of graphs also presented.

The next chapter covers the testbed set-up for a UDP flood attack and defenses.

46

CHAPTER 5

EXPERIMENTAL DESIGN

This chapter describes the experimental network design used in this research to obtain the

results. Section 5.1 covers the experimental set-up of a UDP flood attack, including the

hardware and software specifications. Section 5.2 covers the experimental set-up of

defenses, which are: Access Control Lists, Threshold Limit, Hybrid Defense, IP Verify,

Network Load Balancing, and Software Firewall. Section 5.3 presents the five main network

measurement tools used in this research.

5.1 Experimental Set-up of a UDP Flood Attack

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

Windows 8
Computer Name: PC1
IP: 192.168.1.4/24
Gateway: 192.168.1.1

BackTrack5 R3
Computer Name: ATK1
IP: 192.168.1.2/24
Gateway: 192.168.1.1

BackTrack5 R3
Computer Name: ATK2
IP: 192.168.1.3/24
Gateway: 192.168.1.1

Windows Server 2012
Computer Name: SER1
IP: 192.168.2.2/24
Gateway: 192.168.2.1
Role: Webserver

E0 192.168.1.1 E1 192.168.2.1

UDP ATTACK
LAB SETUP

Switch

Attacker

 Figure 5.1: UDP Flood Attack Testbed Set-up

Figure 5.1 illustrates the experimental network designed for a UDP flood attack. The

proposed network testbed was designated to simulate a real live implementation of a DDoS

attack. To achieve this, the network was set up through a direct connection using a standard

 Experimental Design

47

category 5e cabling between workstations. The router was used to separate the two

networks, and to monitor incoming and outgoing traffic between the networks. There were

four types of workstations in the testbed: Two workstations would act as attackers, one

would act as a victim, and another was used as a monitoring machine. The purpose of this

network design is to maintain consistency with previous work and similar research carried

out in the past (Subramani, 2011).

The workstations where the attackers perform had BackTrack 5 R3 installed. It was a Linux-

based penetration testing arsenal that provided a comprehensive and large collection of

security-related tools including DDoS attack tools (Backtrack, 2013). The victim machine had

Windows Server 2012 installed with the latest version of Microsoft Webserver (IIS8). The

monitoring PC, in which Windows 8 was installed, was where the different varieties of

monitoring tools were installed to gather data and perform the network testing analysis.

Software installed on the monitoring machine was TCPing, Iperf, Wireshark, and, Webserver

Stress Tool.

DDoS is comprised of multiple computers that take part to flood a targeted machine. To

achieve this, two attack machines were used. One machine would launch UDP flood attack

using a valid IP address (the original attacker‟s IP address), and the other machine, which

was a Zombie machine, would attack the victim with massive spoofed IP addresses (random

IP addresses).

In this study, an attack rate of 13000 packets per second and a packet size of 512 Bytes per

packet were used to attack the targeted network. This generated the attack traffic at

approximately 50.7 Mbps. These were the maximum values the server could withstand, and

we would not have been able to measure traffic (e.g., RTT) if the attack packet rate and

packet size had been higher than these values. During the UDP flood attack, CPU utilization,

delay, jitter, packet loss, and user throughput values were collected, and used to compare

with legitimate traffic. The following command was executed from a Linux command prompt

on the attacker machines to craft the UDP packets, and send them to the victim machine:

 Hping3 - -rand-source -i u13000 -UDP -p ++5000 -d 512 192.168.2.2

According to the command, “rand-source” was a command for crafting random source IP

addresses. This command can be changed to the original attacker‟s IP address by typing

his/her IP address instead. “i u 13000” was a command for sending attack packets at 13,000

packets per second. “UDP” was a command for crafting a UDP packet. “P ++5000” was a

command for sending the UDP packets to the destination ports number starting from 5,000

 Experimental Design

48

and increases the number every packet. “D 512” was a command for using an attack packet

size of 512 Bytes per packet. “192.168.2.2” was an IP address of a targeted computer. The

details of the UDP flood attack evaluation process was explained in Section 4.3.2.2.

5.1.1 Hardware and Software Specification

5.1.1.1 Hardware

In order to be consistent and produce accurate data from this study, the hardware used in all

of the experiments was kept identical. The hardware benchmark was comprised of an Intel®

Core™ i5 2.80 GHz processor with 8.00 GB RAM for the efficient operation of operating

systems; Cisco router 2811 and Cisco switch SG 200 were chosen as the network

connection devices. The router was also used for defenses against the attack. Table 5.1

outlines the type and specifications of the hardware involved.

Hardware Specifications

PC

CPU Intel® Core™ i5 2.80 GHz

RAM 8.00 GB

Hard Disk Western Digital Caviar SE 160 GB

LAN Card Intel® PRO/1000 GT Adapter

Motherboard Lenovo

Motherboard Chipset Intel Q965 Rev. 1

Network Connect

Device

Cable CAT5e

Switch Cisco SG 200

Router Cisco 2811

 Table 5.1: Hardware Specifications

5.1.1.2 Software

In terms of software specification, four operating systems were involved in this study; two of

them were Microsoft operating systems and the other two were Linux open source operating

systems. Table 5.2 describes the operating systems, roles, and software installed on the

system. In addition, the details of software are also explained in Section 5.3.

 Experimental Design

49

Operating System Role Software installed

Windows Server 2012 Victim Wireshark, Iperf

Windows 8 Monitoring machine TCPing, Wireshark, Iperf,

Webserver Stress Tool

Linux Ubuntu 13 Victim Wireshark, Iperf

Linux Backtrack R3 Attacker machine Hping3

 Table 5.2: Software Specifications

5.2 Experimental Set-up of Defenses

This section covers the details of the experimental set-up and configuration of defenses.

There were six solutions used against the UDP flood attack in this study. They were Access

Control Lists (Section 5.2.1), Threshold Limit (Section 5.2.2), Hybrid Defense (Section 5.2.3),

IP Verify (Section 5.2.4), Network Load Balancing (Section 5.2.5), and Software Firewall

(Section 5.2.6).

5.2.1 Access Control Lists

Access Control Lists (ACLs) is a network filter utilized by routers to permit and restrict data

flows into and out of network interfaces. When an ACL is configured on an interface, the

router analyses the data passing through the interface, and compares them to the criteria

described in the ACL table. The router can either permit the data to flow or drop it (Cisco,

2013d).

This study aims at applying ACLs on the victim router in order to prevent a specific set of IP

addresses. An example of these IP addresses is the private IP addresses. These IP

addresses are usually not routable on the Internet, therefore, if traffic comes in with these IP

addresses from the public Internet, it must be fraudulent traffic. Figure 5.2 shows the

experimental set-up for ACLs defense.

 Experimental Design

50

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Block: All Private IP Addresses

 Figure 5.2: Access Control Lists Set-up

According to Figure 5.2, in order to prevent a UDP flood attack on the network, the first step

is to block all IP addresses that pose a risk (David, 2007). The example of these IP address

is private IP addresses, and other types of shared/special IP addresses. These IP addresses

are usually not routable on the Internet, and the attacker can use one of these IP addresses

to hide the true source of the attack (IP spoofing). Table 5.2 is a list of IP addresses that

need to be blocked:

Risky IP Address Reason

10.10.0.0 Private IP Address Class A

172.16.0.0 Private IP Address Class B

192.168.0.0 Private IP Address Class C

224.0.0.0 Multicast Address

127.0.0.0 Loop Back Address

169.254.0.0 Automatic Private Internet Protocol Addressing

 Table 5.2: List of Risky IP Addresses

All of IP addresses showing in Table 5.2 are either private IP addresses that cannot be used

on the Internet or are used for other purposes. For example, “IP 169.254.0.0” is reserved for

client computers when they cannot connect to a DHCP server. Therefore, if traffic comes in

with this IP address from the public Internet, it must be malicious traffic. In addition, it can be

 Experimental Design

51

noted that this defense cannot block attacking traffic if the attacker uses IP addresses that

are not on the black lists, e.g., spoofed public IP addresses.

In this thesis, the following ACL rules were used to stop the UDP flood attack. These rules

were entered into the router‟s command line interface using the router interface (f0/0), which

was the router interface of the victim network.

 Config t

 IP access-list ext ingress-antispoof

 Deny IP 224.0.0.0 31.255.255.255 any

 Deny IP 169.254.0.0 0.0.255.255 any

 Deny IP 172.16.0.0 0.15.255.255 any

 Deny IP 127.0.0.0 0.255.255.255 any

 Deny IP 10.0.0.0 0.255.255.255 any

 Permit IP any any

 Int f0/0

 IP access-group ingress-antispoof IN

The first command “Config t” was used to execute configuration commands from the

terminal. The next command “Deny IP 224.0.0.0 31.255.255.255 any” was a set of IP

addresses that were blocked. The next command “Int f0/0” was used for specifying the

interface of the network that was to be protected from the attack (victim‟s network). Finally,

when the command “IP access-group ingress-antispoof IN” was entered, the router would

block the IP addresses defined.

5.2.2 Threshold Limit

Unlike Access Control Lists, the Threshold Limit technique does not aim to block any traffic

from the outside of the network (Cisco, 2013b), instead it sets up a rate limit of traffic that the

server can withstand. The advantage of this approach is that it allows the network

administrator to decide how much traffic should be let inside the network. This traffic rate

also depends on the size of the organization, the server‟s processing capacity, and the traffic

it would be able to withstand. Figure 5.3 shows the experimental set-up for the Threshold

Limit technique.

 Experimental Design

52

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Limit Traffic Rate at
 10000 Packets per second

 Figure 5.3: Threshold Limit Set-up

In this study, the following command was used for limiting traffic from the attacking network

up to the threshold. These commands were entered into the router‟s command line interface

using the router interface (f0/0), which was the router interface of the victim network.

 Config t

 Int f0/0

 Rate-limit input 10000 10000 10000 conform-action transmit exceed-action drop

 Ctrl + C

 Write

The first command “Config t” was used to execute configuration commands from the

terminal. On the second line, “Int f0/0” was used to define the interface where the incoming

traffic from the outside of the network should be policed. The third line was used to define

the amount of traffic that could pass through the network. In addition, the first value of 10000

was defined as Bytes per second, which was the amount of traffic that the server would be

able to serve for the clients connected to it (Subramani, 2011). The last value of 10000 was

defined as the burst maximum, which was used to maintain a steady flow of packets and

handle the traffic fluctuations. After applying this command, the incoming traffic that did not

exceed these conditions was transmitted, whereas the rest of it was dropped. Figure 5.4

illustrates the traffic rate after using the Threshold Limit technique.

 Experimental Design

53

 Figure 5.4: Output from Wireshark After Using Threshold Limit Technique

According to Figure 5.5 below, this defense allows all packets to enter the network but limits

the traffic rate up to the threshold (up to 10000 packets per second). One of the advantages

of this defense is that it has the ability to maintain a steady flow of packets, and the traffic

fluctuations. This technique is also suitable for the originations that do not want to block

private IP addresses with some reasons. Moreover, since it does not block private IP

addresses, it can be implemented inside the network to protect servers from DDoS attacks

launched by malicious insiders (Subramani, 2011).

ATTACKER
(Private Spoofed IP

Addresses)

ATTACKER
(Public Spoofed IP

Addresses)

Victim
(192.168.2.2)

Legitimate User

R

A

T

E

L

I

M

I

T

 Figure 5.5: Threshold Limit Defense Strategy

Limit packet rate

both attacker and

legitimate user

(Limit packet rate at 10000 packets

per second)

 Experimental Design

54

5.2.3 Hybrid Defense

Hybrid Defense was proposed by Subramani (2011) to improve existing DDoS solutions:

ACLs and Threshold Limit. Hybrid Defense is the enhanced solution that combines the main

advantages of both Access Control Lists and Threshold Limit techniques to govern the traffic

flow better. This defense gives the ability to a victim‟s router to drop the malicious packets

and control the incoming traffic rate up to the threshold. Figure 5.6 shows the experimental

set-up for Hybrid Defense.

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Block Private IP Addresses
and Limit Traffic Rate

 Figure 5.6: Hybrid Defense Set-up

In this thesis, the following command was used in order to block and limit traffic from the

attacking network. These commands were entered into the router‟s command line interface

using the router interface (f0/0), which was the router interface of the victim network.

 Config t

 IP access-list ext hybrid-defense

 Deny IP 224.0.0.0 31.255.255.255 any

 Deny IP 169.254.0.0 0.0.255.255 any

 Deny IP 172.16.0.0 0.15.255.255 any

 Deny IP 127.0.0.0 0.255.255.255 any

 Deny IP 10.0.0.0 0.255.255.255 any

 Permit IP any any

 Exit

 Experimental Design

55

 Int f0/0

 Rate-limit input 10000 10000 10000 conform-action transmit exceed-action drop

 IP access-group hybrid-defense IN

The first command “Config t” was used to execute configuration commands from the

terminal. Since private IP addresses and special IP addresses cannot be used on the

Internet, all of the IP addresses described on the third to seventh lines were blocked. On the

eleventh command, it allowed the rest of the IP addresses to pass through the network, but it

still limited the traffic rate up to 10000 packets per second. These commands were applied

on the inference f0/0 which was the router interface of the victim network. The Hybrid

Defense strategy is explained in Figure 5.7:

ATTACKER
(Private Spoofed IP

Addresses)

ATTACKER
(Public Spoofed IP

Addresses)

Victim
(192.168.2.2)

Legitimate User
R

A

T

E

L

I

M

I

T

 Figure 5.7: Hybrid Defense Strategy

According to Figure 5.7, after implementing Hybrid Defense on the victim‟s router, the result

from Wireshark installed on the server (victim computer) showed that none of private

spoofed IP address could gain access to the webserver. This is because the router had

dropped all IP addresses that fell into the black-lists. Another advantage of this defense is

that it could also drop a traffic rate that was higher than the threshold (Subramani, 2011).

Limit traffic rate and

block private IP

addresses

 Experimental Design

56

5.2.4 IP Verify

IP Verify is a technique used in routers for the purpose of protecting a network from a DDoS

attack or preventing infinity loops of packets in multicast routing. This security feature gives

the ability to the router to verify the reachability of the source IP addresses before they can

enter the network. If the source IP address is not valid, the packet is dropped (David, 2007).

The IP Verify technique has two modes: strict mode, and loose mode. In terms of the strict

mode, the packet must be received on the same interface that the router will use to send a

return packet. One of the disadvantages of the strict mode is that it may drop legitimate

traffic if the traffic is coming from different interfaces from those the router has decided on

(Cisco, 2013c).

For IP Verify in the loose mode, on the other hand, the source address must appear in the

routing table. Each incoming source IP address needs to be tested against this forwarding

table, and the packet is discarded if the source address in not reachable via any interface on

the router (Cisco, 2013c). Since IP Verify in the strict mode can drop legitimate traffic, the

unicast RPF loose mode was selected as a proposed defense. Figure 5.8 shows the

experimental set-up for IP Verify:

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

Attacker

Verify the Source IP

Address

 Figure 5.8: IP Verify Set-up

 Experimental Design

57

In this thesis, the following commands were used for implementing the IP Verify loose mode

on the router. These rules were entered into the router‟s command line interface using the

router interface (f0/0), which was the router interface of the victim network:

 Config t

 IP cef

 Int f0/0

 IP verify unicast source reachable-via any

The first command “Config t” was used to execute configuration commands from the

terminal. On the next commands “IP cef” was a command for implementing IP Verify

defense on the router. The command “Int f0/0” was used for specifying the interface of the

network that needed to be protected from the attack. Finally, when the command “IP verify

unicast source reachable-via any” was entered, the router would verify the reachability of the

source IP address before it could enter the network. The IP Verify strategy is explained in

Figure 5.9:

Router

Server
(192.168.2.2)Attacker

1.

(1) Send IP Packets

Router

Server
(192.168.2.2)Attacker

2.

(2) Router Looks Up to See If It has a Route
in its Routing Table to Reply to Packets

Router

Server
(192.168.2.2)Attacker

3.

(3.2) If they are seem to be
invalid, Packets are Dropped

(3.1) If So, It Forwards IP
Packets to the Server

 Figure 5.9: IP Verify Strategy

 Experimental Design

58

According to Figure 5.9, IP Verify takes the source IP address of a packet received from the

Internet and looks up to see if the router has a route in its routing table to reply to that

packet. If there is no route in the routing table for a response to return to the source IP, then

someone likely has spoofed the packet, and the router drops the packet. However, the

disadvantage of this defense is that it cannot prevent DDoS attacks based on a valid IP

address (David, 2007). For example, if the attacker launches the attack by using his/her IP

address as a source IP address, this defense will be useless, because this defense will

determine that the IP address is a valid IP address.

5.2.5 Network Load Balancing

Network Load Balancing (NLB) is a Microsoft implementation of clustering and load

balancing that is available in Microsoft Server 2012 (Microsoft, 2014). NLB is software

based, which does not require proprietary hardware, and any industry standard compatible

computer can be used. In terms of Linux operating system, BalanceNG was selected as a

software IP load balancing solution (BalanceNG, 2014). Network Load Balancing has been

used by many researchers such as Le, Boutaba and Shaer (2008) who used NLB to improve

network performance during DDoS attacks.

In this study, NLB was used to reduce the impact of a UDP flood attack on the network.

When the attack took place, it balanced incoming traffic and a workload to an additional

server using different paths and cables. It can be noted that the purpose of this solution is

not to stop the attack but to share traffic to other paths of the network. As a result, the

targeted server still has enough computing resources (e.g., CPU and network bandwidth) to

provide service to its clients during the attack (Stephen & Ruby, 2004). Figure 5.10 shows

the experimental set-up for the Network Load Balancing:

 Experimental Design

59

Router

IP: 192.168.2.3
 (Host Priority 2)

F0/0 192.168.1.1 F0/1 192.168.2.1

Switch

IP: 192.168.2.2
 (Host Priority 1)

IP Cluster
 (192.168.2.9)

 Server

 Server
 Attacker

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

Attacker

 Figure 5.10: Network Load Balancing Network Set-up

As shown in Figure 5.10, in order to implement NLB, an additional server was added to the

switch. Two servers were needed to configure an IP cluster, which was used as a “shared”

IP address between the two servers. By using this IP address, when a client connected to

the server, it automatically connected to the server that had the higher priority first. Similarly,

when a large number of attack packets entered the network, NLB shared traffic to both

servers equally (in this study the 50:50 rule was used). As a result, the targeted server still

had enough computing resources to provide a service to clients during the attack.

There are two NLB modes: unicast mode and multicast mode. In this study, the unicast

mode was selected. According to the Cisco website, the multicast mode has an issue with

Cisco routers when a client and a server are located in different subnets. This is because

Cisco routers do not accept an ARP reply for a unicast IP address that contains a multicast

MAC address (Cisco, 2013a). The following parameters were used in this study:

 Cluster operation mode: Unicast

 Port rage: 0 to 65535

 Protocols: TCP and UDP

 Filtering mode: Multiple host

 Load weight: Equal

 Experimental Design

60

5.2.6 Anti-DDoS Firewall

In this study, Anti-DDoS Guardian™ was selected as a software firewall. It is a high-

performance firewall designed for modern operating systems including Windows 8 and

Windows Server 2012. Anti-DDoS Guardian™ can prevent UDP flood attack by creating IP

backlists, limiting UDP bandwidth, UDP connection rate, and UDP packet rate (Beethink,

2014). Figure 5.11 illustrates the experimental set-up for the software firewall:

Router

 Attacker

Server (Victim)

Switch

Monitoring PC

IP: 192.168.1.4/24

IP: 192.168.1.2/24 IP: 192.168.1.3/24

IP: 192.168.2.2/24

E0 192.168.1.1 E1 192.168.2.1

Switch

Attacker

Install:
Anti-DDoS Guardian™

 Figure 5.11: Software Firewall Network Set-up

According to Figure 5.11, the software firewall was installed on the victim computer and run

in the background as a Windows service. To get the highest performance possible against

the attack, the following parameters were used. Note that, if the parameters were set lower

than these values, legitimate packets might be dropped during the attack.

 The maximum bandwidth allocated to each IP address is 50,000KBps

 The maximum number of incoming UDP packets per second is 10,000

 The maximum number of incoming ICMP packets per second is 10,000

 The maximum number of concurrent client IP addresses is 1,500

 Experimental Design

61

 Figure 5.12: Example of Output from Anti-DDoS Guardian

Figure 5.12 shows the software firewall blocked the public spoofed IP addresses. The result

from Wireshark installed on the server (victim computer) also showed that none of the

private spoofed IP addresses could gain access to the webserver because the software

firewall had dropped the IP addresses that fell into the black-lists. However, the

disadvantage of this approach is that it consumed computer resources (especially CPU

utilization) at a greater rate than the other defenses because this defense needed to use the

CPU of the server in the process of dropping bad traffic (Lad, Alghalbi, & Ahmed, 2013).

5.3 Network Performance Measurements Tools

There are varieties of performance tools available for measuring the performance of various

networks. Selecting the right tool for the experiment is critical because different tools have

different functionalities. The following list describes the selection criteria for the tools in this

thesis:

 The tool must support the Internet protocol version 4.

 The tool must support both Windows and Linux based platforms.

 The tool must have high reliability and have been used in other researches before.

 The tool must be able to measure and display results including the required

performance metrics.

There were five possible candidates for this project, which are Iperf (Section 5.3.1),

Wireshark (Section 5.3.2), TCPing (Section 5.3.3), Webserver Stress Tool (Section 5.3.4),

and Hping3 (Section 5.3.5). In this section the analysis, review and discussion of these tools

is presented.

Public spoofed

IP addresses are

blocked

 Experimental Design

62

5.3.1 Iperf

Iperf (Openmaniak, 2009) is open source software used for measuring the network

bandwidth between a client and server. It also has the ability to evaluate the TCP and UDP

throughputs, and measure delay, jitter, and packet loss of the targeted computer. Iperf is a

command line interface and supports many operating systems including Windows, and

Linux.

In this research, Iperf was the primary tool used for measuring user throughputs, jitter, and

packet loss. These metrics were collected in three states: before the attack, during the

attack, and after using the solutions. To run Iperf, it needed to be installed on two computers,

which were a victim computer and a monitoring computer. The former would act as an Iperf

client, while the latter would act as the Iperf server. Figure 5.13 shows UDP throughput

output from Iperf:

 Figure 5.13: Example of UDP throughput Output from Iperf

UDP Throughput

 Experimental Design

63

5.3.2 Wireshark

Wireshark is an open source packet analyzer which can be used for monitoring and

analyzing protocols transmitted between the networks. Wireshark is graphical user interface

software based, which is compatible with a variety of operating systems, including Windows,

and Linux (Wireshark, 2014). Wireshark has many features including:

 It supports over 750 networking protocols.

 It can save captured files in a variety of formats.

 Data display can be refined using a display filter.

 It runs on over 20 platforms.

 It includes a command line version called Tshark.

In this study, the tool was used to monitor UDP packets sent from the attacker computer to

the victim computer. To run the software, it needed to be installed on a victim computer.

After installation, it required the user to choose the desired network interface card (NIC) that

he/she wished to monitor the traffic from. Figure 5.14 illustrates an example of Wireshark

output:

 Figure 5.14: Example of Wireshark Output

5.3.3 TCPing

TCPing is a small console application that operates similarly to “ping”. However, it works

over a TCP port ("Ping over a TCP Connection", 2013). TCPing allows network

administrators to check the round-trip time between the source and destination using TCP

(not ICMP). In addition, the tool can be used for testing open ports on remote machines, or

as an alternative to the standard “ping” in a case where ICMP packets are blocked or

ignored.

 Experimental Design

64

In this study, TCPing was a primary tool used to investigate the RTT between the server

(victim) and legitimate computer. RTT was collected in three states: before the attack, during

the attack, and after using solutions. To achieve this, the tool was installed on the monitoring

computer and ran the following command using a command line interface. Figure 5.15

shows an example of TCPing output:

 tcping <the destination IP address> <port number>

5.3.4 Webserver Stress Tool

The Webserver Stress Tool is software for load and performance testing of a webserver,

which is designed to simulate up to 1000 simultaneous users accessing a website

(Webstress, 2014). By simulating the HTTP requests generated by simulated users, this

software can be used to test webserver performance under normal and excessive loads (Bai

& Yang, 2006). The Webserver Stress Tool complies with a number of different testing

types, including:

 Load Tests

 Performance Tests

 Ramp Tests

 Stress Tests

In this study, the Webserver Stress Tool was used to generate legitimate traffic. In order to

identify the performance of the network before the UDP flood attack, legitimate traffic was

required. To achieve this, the software was installed on the monitoring computer using 10

users, and the test was run for 5 minutes, which generated traffic at 1,333 packets per 5

minutes. Figure 5.16 shows an example of TCPing output:

 Figure 5.15: Example of TCPing Output

 Experimental Design

65

 Figure 5.16: Example of Webserver Stress Tool Output

5.3.5 Hping3

Hping3 is a command-line packet crafter used to generate IP packets containing TCP, UDP

or ICMP payloads. It has the ability to generate different types of DDoS attacks including

UDP flood attacks, TCP flood attacks and Smurf attacks. Hping3 is used by security

professionals to test the vulnerability of the computer ports, and firewall rules on networks

(Hping, 2014).

In this study, Hping3 was the primary tool used for generating the UDP flood attack on the

victim computer. To achieve this, the tool was installed on two attacker computers. One

machine would launch UDP flood attack using a valid IP address (the original attacker‟s IP

address), and the other machine, which was a Zombie machine, would attack the victim with

massive spoofed IP addresses (random IP addresses).

The UDP flood attack was generated for 5 minutes using an attack rate of 13,000 packets

per second and the packet size was 512 Bytes per packet, which generated attack traffic at

approximately 50.7 Mbps. Figure 5.17 shows a screenshot of the UDP flood attack using

Hping3:

 Experimental Design

66

 Figure 5.17: Example of Hping3 Output

5.4 Chapter Summary

This chapter covered the experimental network set-up designs and network test-bed

diagrams. There were four computers used in this study, two workstations were attacker

computers, one was a victim computer, and the last one was a monitoring machine. This

chapter also covered the experimental set-up and configuration of defenses. There were six

solutions used against the UDP flood attack in this study. They were Access Control Lists,

Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and Software Firewall.

The last section presented the review and discussion of the five main network measurement

tools used in this study. An example of screenshots was also presented.

The next chapter is an evaluation of the UDP flood attack on a webserver using Windows

Server 2012.

67

CHAPTER 6

EVALUATION OF UDP FLOOD ATTACK ON

WEBSERVER USING WINDOWS SERVER 2012

This chapter covers the analysis of the results gathered from experiments using Windows

Server 2012. Section 6.1 covers the impact of a UDP flood attack on throughputs based on

TCP and UDP applications. Section 6.2 covers the impact of a UDP flood attack on the

webserver, and evaluates round-trip time, packet loss, CPU utilization, and jitter. Section 6.3

covers the analysis of six defense mechanisms, namely, Access Control Lists, Threshold

Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software Firewall.

Throughputs, round-trip time, packet loss, CPU utilization of the network with/without

defenses are compared.

6.1 Impact of UDP Flood Attack on Throughputs

The section covers the impact of a UDP flood attack on throughputs before and during the

attack. TCP and UDP were selected as the transmission protocols. The primary tools used in

this study were Iperf and Hping3. The former was used to fill up the Ethernet link at 86.4

Mbps while Hping3, which was the attack tool, was used to generate attack traffic at 156.2

Mbps. The server was put on high traffic load to evaluate the impact on the bandwidth. To

ensure high data accuracy, the test was repeated 30 times and result average and runs

continued until standard deviation of results was below 0.07% of the average. The

evaluation process and measurement tools used in this chapter were discussed in Section

4.3.2.2 and Section 5.3.

6.1.1 TCP Throughput

This section presents the impact of a UDP flood attack on throughputs. TCP was selected as

the transmission protocols, which was used for webserver traffic. The Y axis shows the

number of throughputs in megabits per second, while the X axis shows the length of the

experiment in seconds.

 Evaluation of UDP Flood Attack on Windows Server 2012

68

Figure 6.1: TCP Throughputs Before and During Attack on Windows Server 2012

Scenario Time (Seconds) Throughput (Mbps) Standard Deviation

Before Attack All 86.40 0.002

During Attack

2 32 0.045

3 0.19 0.064

After 4 Seconds 0.19-0.24 -

Table 6.1: Average TCP Throughputs and Standard Deviation for 30 Runs Before and During Attack

 on Windows Server 2012

Figure 6.1 illustrates the TCP throughput values before and during the attack. The result

shows that the TCP throughput value before the attack was constant at 86 Mbps. This

number was generated by Iperf. During the attack, however, this number significantly

dropped from 86 Mbps to 0.19 Mbps within 3 seconds. The reason is that the attacker had

sent a large number of UDP packets to the victim computer and eventually caused network

congestion between the two nodes. It can be noted that the TCP throughput value was

almost stable after 3 seconds, at around 0.19 Mbps to 0.24 Mbps.

6.1.2 UDP Throughput

This section presents the impact of a UDP flood attack on throughputs. UDP was selected

as the transmission protocol, which was used for VoIP applications. The Y axis shows the

number of throughputs in megabits per second, while the X axis shows the length of the

experiment in seconds.

32

0.24 0.22 0.23 0.19 0.21 0.23

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

TC
P

 T
h

ro
u

gh
p

u
t

[M
b

p
s]

Time [Seconds]

Without Attack

During Attack

86 86.4 86.4 86.5 86 86.6

HIGHER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

69

Scenario Time (Seconds) Throughput Standard Deviation

Before Attack All 86.50 0.002

During Attack

2 60.48 0.041

3 28.52 0.012

After 4 Seconds 38-39 -

Table 6.2: Average UDP Throughputs and Standard Deviation for 30 Runs Before and During Attack on

 Windows Server 2012

Figure 6.2 illustrates the UDP throughput values before and during the attack. The result

shows that the UDP throughput value before the attack was similar to TCP (Figure 6.1), at

around 86 Mbps. During the attack, however, this number dropped to 38.5 Mbps within 3

seconds. After that, the UDP throughput value was constant at around 38 to 39 Mbps. It can

be noted that the UDP throughput value during the attack was higher than TCP. The reason

is that UDP is a connectionless protocol, which does not require a dedicated end-to-end

connection. Also, it does not use a flow control; therefore, it can keep sending data even if

traffic gets congested (Kolahi, Rico, & Hong, 2013). In terms of TCP, it uses a flow control

protocol to limit the rate a sender transfer‟s data to guarantee reliable delivery (Loshin,

2003). This could be the reason why the number of the UDP throughputs was higher than

TCP during the attack.

60.4

38.5 38.3 39.1 38.7 38.5 38.6

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U
D

P
 T

h
ro

u
gh

p
u

t
[M

b
p

s]

Time [Seconds]

Without Attack

During Attack

86 86.4 86.4 86.5 86 86.6

HIGHER IS BETTER

 Figure 6.2: UDP Throughputs Before and During Attack on Windows Server 2012

 Evaluation of UDP Flood Attack on Windows Server 2012

70

6.2 Impact of UDP Flood Attack on Webserver Using Windows Server 2012

This section covers the impact of a UDP flood attack on the webserver using Windows

Server 2012. The primary tools used in this study were Webserver Stress Tool and Hping3.

The former was used to generate the connection request from users to the webserver

assuming on average 10 users per second, while Hping3 was used to generate the attack

traffic at 13000 packets per second (unless the attack packet rate and packet size are

otherwise defined in the next sections). The monitoring PC was used to gather DDoS

parameters when a legitimate or attack traffic was launched. To ensure high data accuracy,

the test was repeated 30 times and data average and runs continued until the standard

deviation of results was below 0.07% of the average. In addition, in some studies, the attack

rate and attack packet sizes were increased to find out the effect of traffic load on different

attack packet rates and attack packet sizes.

6.2.1 Round-trip Time

Round-trip time (RTT) is the time required for a packet to travel from a source to a

destination and back again. The primary tool used in this study was TCPing, which was the

tool used to gather the delay values of the webserver. The test was repeated 30 times using

an attack rate of 13000, 12000, and 9000 packets per second, while the attack packet size

was constant at 512 Bytes per packet. These tests generated attack traffic at 50.7 Mbps,

46.8 Mbps, and 35.1 Mbps, respectively. This study was done in order to evaluate the

impact of packet rate on delay.

 Figure 6.3: Round-trip Time Before and During Attack on Webserver Using Windows Server 2012

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
TT

 [
m

s]

Number of Runs

Without Attack

Attack with 9000 pps

Attack with 12000 pps

Attack with 13000 pps

LOWER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

71

Attack Packet Rate (pps) Average RTT(ms) Standard Deviation

Before Attack 0.990ms 0.016

9000 1.096ms 0.031

12000 1.275ms 0.045

13000 27.384ms 0.063

 14000+ Connection out -

Table 6.3: Average RTT and Standard Deviation for 30 Runs Before and During Attack on Webserver

 Using Windows Server 2012

Figure 6.3 illustrates the average RTT for 30 runs between the client and the webserver

during the UDP flood attack. The result shows that the RTT before the attack was 0.99ms. In

terms of RTT during the attack, it can be observed that the RTT value was generally

increased as the packet rate increased. By using an attack packet rate at 9000pps (35.1

Mbps), the average RTT slightly increased from 0.99ms to 1.09ms. By using 12000pps (46.8

Mbps), the average RTT went up to 1.27ms. Interestingly, the average RTT significantly

increased from 0.99ms to 27.38ms if the attacker used a packet rate of 13000pps (50.7

Mbps). In addition, the connection was cut off if the packet rate increased any further and it

was impossible to measure RTT due to high traffic loads.

6.2.2 Packet Loss

In this study, packet loss refers to the amount of legitimate packets lost during the UDP flood

attack. The primary tool used in this study was Iperf, which was the tool used to gather the

packet loss values. The attack packet sizes used in this study were 64, 128, 256, 512, 1024,

1280, and 1518 Bytes, while the attack packet rate was constant at 13000 packets per

second. They generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7 Mbps,

101.5 Mbps, 126.9 Mbps, and 150.5 Mbps, respectively. This study was done in order to

evaluate the packet loss versus attack traffic load.

 Evaluation of UDP Flood Attack on Windows Server 2012

72

Figure 6.4: Size of Attack Packet VS Legitimate Packet Loss on Webserver Using Windows Server 2012

Attack Packet Size (Bytes) Legitimate Packet Loss (%) Standard Deviation

256 15.215 0.021

512 56.170 0.042

1024 61.215 0.023

1280 65.466 0.047

1518 75.200 0.031

Table 6.4: Size of Attack Packet VS Legitimate Packet Loss and Standard Deviation for 30 Runs on

 Webserver Using Windows Server 2012

Figure 6.4 illustrates the legitimate packet loss versus the attack packet size. On the whole,

there was no packet loss on the frame sizes 64, and 128 (size of attack packet). By using

256 Bytes (25.3 Mbps), the average of legitimate packet loss went up from 0% to 15.2%.

The packet loss value significantly increased to 56.1% if the attack packet size was 512

Bytes (50.7 Mbps). On the largest frame size, 1518 Bytes (150.5 Mbps), the average packet

loss value went up to 75.2%. The results in this study showed that the packet loss was

related to the size of the attack packet. This is because the larger packet size could

consume more of the network bandwidth. In other words, the legitimate packets start to get

dropped when the availability of bandwidth is insufficient.

0 0

15.2

56.1

61.2
65.4

75.2

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 1280 1518

Le
gi

ti
m

at
e

 P
ac

ke
t

Lo
ss

 [
%

]

Size of Attack Packet [Bytes]

Packet Size VS Packet Loss

 Evaluation of UDP Flood Attack on Windows Server 2012

73

6.2.3 CPU Utilization

This section shows the impact of the CPU usage before and during the attack on the

webserver using Windows Server 2012. The primary tool used in this study was Microsoft

Resource Monitor, which was the tool used to monitor the CPU usage on the server.

 Figure 6.5: CPU Utilization Before and During Attack on Webserver Using Windows Server 2012

Scenario Time (Second) CPU Utilization (%) Standard Deviation

Before Attack All 1-2 -

During Attack

2 9.36 0.150

3 19.52 0.077

4 21.28 0.080

After 5 Seconds 19-24 -

Table 6.5: Average CPU Utilization and Standard Deviation Measured 30 Times Before and During Attack

 on Webserver Using Windows Server 2012

Figure 6.5 illustrates the CPU utilization before and during the attack on the webserver using

Windows Server 2012. The result shows that the CPU usage before the attack was constant

at 1 to 2%. During the attack, however, the CPU utilization went up at approximately 10%

within 2 seconds and increased to 22% in 4 seconds. Afterwards, it fluctuated between 19%

and 24%. In terms of the RAM utilization, the result shows that there was only a minor

difference between RAM usage before and during the attack (the graph is not shown). The

RAM utilization before the attack was constant at 8%, and went up to between 10% and 15%

during the attack. In terms of hard disk utilization, there was no difference between the hard

disk usage before and during the attack (the graph is not shown); the hard disk utilization

was constant at 100 KB per second. This indicates that a UDP flood attack has more impact

on the CPU than on the RAM and hard disk.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

C
P

U
 U

ti
liz

at
io

n
 [

%
]

 During Attack

Before Attack

Time [Seconds]

LOWER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

74

6.2.4 Jitter

This section presents a comparison of legitimate jitter values during the UDP flood attack.

The primary tool used in this study was Iperf, which was the tool used to gather the jitter

values of the victim computer. The attack packet sizes used in this study were 64, 128, 256,

512, 1024, 1280, and 1518 Bytes, while the attack packet rate was constant at 13000

packets per second. These tests generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3

Mbps, 50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and 150.5 Mbps, respectively.

 Figure 6.6: Jitter VS Packet Size on Webserver Using Windows Server 2012

Attack Packet Size (Bytes) Jitter (ms) Standard Deviation

Before Attack 0.663 0.031

64 0.929 0.022

128 1.047 0.059

256 1.061 0.021

512 10.476 0.047

1024 22.162 0.023

1280 31.656 0.067

1518 41.130 0.074

Table 6.6: Size of Attack Packet VS Jitter and Standard Deviation for 30 Runs on Webserver Using

 Windows Server 2012

Figure 6.6 illustrates the average legitimate jitter value versus packet sizes (attack packet).

On the whole, the result shows that the jitter value was increased as the attack packet size

increased. Without the attack, the jitter value was 0.663ms. During attack, the jitter values

slightly went up when using the attack packet sizes between 64 to 256 Bytes (6.3 Mbps,

12.6 Mbps, and 25.3 Mbps).

0.663 0.929 1.047 1.061

10.476

22.162

31.656

41.13

0

5

10

15

20

25

30

35

40

45

Before
Attack

 64 128 256 512 1024 1280 1518

Ji
tt

e
r

[m
s]

Size of Attack Packet [Bytes]

 Evaluation of UDP Flood Attack on Windows Server 2012

75

The most noticeable feature of this graph is that the jitter value significantly increased when

using attack packet sizes between 512 Bytes and 1518 Bytes (50.7 Mbps, 101.5 Mbps,

126.9 Mbps, and 150.5 Mbps). By using 512 Bytes (50.7 Mbps), the average jitter value

went up from 0.663ms to 10.476ms. The jitter value increased to 22.162ms if the attack

packet size was 1024 Bytes (101.5 Mbps). On the largest frame size, 1518 Bytes (150.5

Mbps), the average jitter value went up significantly to 41.13ms. High jitter values cause

degradation in performance and lead to instability in services especially in real-time

applications (Marti, Fuertes, Fohler, & Ramamritham, 2001).

6.3 Comparisons of Defense Mechanisms on Windows Server 2012

This section covers an analysis of defense mechanisms against a UDP flood attack on

Windows Server 2012. There were six defenses used in this study, namely, Access Control

Lists, Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS

Software Firewall. The efficiency of each defense was evaluated by comparing throughputs,

delay, packet loss, and CPU utilization values before and after using the defenses. To

ensure high data accuracy, the test was repeated 30 times and result average and runs

continued until standard deviation of results was below 0.07% of the average. The

evaluation process and experimental set-up of defenses were discussed in Section 4.3.2.2

and Section 5.2.

6.3.1 TCP Throughput

This section covers the impact of the UDP flood attack on throughputs after using defenses.

TCP was selected as the transmission protocol, which was used for webserver traffic. The

primary tools used in this study were Iperf and Hping3. The former was used to fill up the

Ethernet link at 86.4 Mbps, while Hping3, which was the attack tool, was used to generate

attack traffic at 156.2 Mbps.

 Evaluation of UDP Flood Attack on Windows Server 2012

76

 Figure 6.7: TCP Throughputs After Using Defenses on Windows Server 2012

Scenario Defense Throughput (Mbps) Standard Deviation

Before Attack - 86.60 0.002

During Attack

No Defense 0.19 0.066

Hybrid Method 86.40 0.012

Threshold Limit 86.30 0.018

ACLs 18.48 0.047

IP Verify 15.67 0.081

Load Balancing 0.28 0.071

Software Firewall 0.251 0.068

Table 6.7: Average TCP Throughputs and Standard Deviation For 30 Runs After Using Defenses on

 Windows Server 2012

Figure 6.7 presents TCP throughput values after using six defenses. The result shows that

the TCP throughput value before the attack was stable at around 86 to 86.6 Mbps. During

the attack, however, this number significantly dropped to 0.19 Mbps. This is because the

attacker sent huge numbers of attack packets which eventually caused bandwidth

consumption.

The most effective defenses in this study were the Hybrid Method and the Threshold Limit in

which the number of throughput values before the attack and after using the solutions were

almost the same, which was about 86.60 Mbps. ACLs came in third, which increased the

TCP user throughput value from 0.19 Mbps to 18.48 Mbps. This number was similar to IP

Verify, which increased TCP throughputs to 15.67 Mbps. The most ineffective defense

mechanisms in this study were Network Load Balancing and the Software Firewall, which

only increased TCP user throughput values from 0.19 Mbps to 0.288 Mbps, and 0.251 Mbps,

respectively. The major disadvantage of Network Load Balancing is that it did not aim to stop

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

TC
P

 T
h

ro
u

gh
p

u
t

[M
b

p
s]

Time [Seconds]

Before

During Attack

ACL

IP Verify

Threshold Limit

Hybrid Method

Anti-DDoS Firewall

Load Balancing

Before Attack

 Evaluation of UDP Flood Attack on Windows Server 2012

77

the attack, instead, it shared incoming traffic with an additional server. Therefore, the

network bandwidth would be entirely consumed if the attacker kept sending the attack

packets. In terms of the Software Firewall, it blocked attack traffic at the victim computer

(unlike other defenses that dropped the attack packets at the router). As a result, the

targeted computer was still affected by the attack packets.

6.3.2 UDP Throughput

This section covers the impact of the UDP flood attack on throughputs after using defenses.

UDP was selected as the transmission protocol, which was used for VoIP traffic. The primary

tools used in this study were Iperf and Hping3. The former was used to fill up the Ethernet

link at 86.4 Mbps, while Hping3, which is the attack tool, generated the attack traffic at 156.2

Mbps.

Figure 6.8: UDP Throughputs After Using Defenses on Windows Server 2012

Scenario Defense Throughput (Mbps) Standard Deviation

Before Attack - 86.60 0.002

During Attack

No Defense 38.70 0.081

Hybrid Method 86.50 0.012

Threshold Limit 86.40 0.017

ACLs 66.01 0.020

IP Verify 61.96 0.026

Load Balancing 43.35 0.032

Software Firewall 39.10 0.071

Table 6.8: Average UDP Throughputs and Standard Deviation For 30 Runs After Using Defenses on

 Windows Server 2012

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

U
D

P
 T

h
ro

u
gh

p
u

t
[M

b
p

s]

Time [Seconds]

Before

During Attack

ACL

IP Verify

Threshold Limit

Hybrid Method

Anti-DDoS Firewall

Load Balancing

Before Attack

 Evaluation of UDP Flood Attack on Windows Server 2012

78

Figure 6.8 presents a comparison of UDP throughput values after using six defenses. The

result shows that the UDP throughput value before the attack was stable at about 87 Mbps.

During the attack, however, this number dropped to 38.7 Mbps. This is because the attacker

sent huge numbers of attack packets, which eventually caused bandwidth consumption.

The most effective solutions in this study were the Hybrid Method and the Threshold Limit.

Both defenses increased UDP throughput values from 38.7 Mbps to 86.5 Mbps, and 86.4

Mbps, respectively. ACLs, which increased the number of UDP throughput values from 38.7

Mbps to 66.01 Mbps, came in third. This number was similar to IP Verify, which increased

the UDP throughput values to 61.96 Mbps. Network Load Balancing and the Software

Firewall were the most ineffective defense mechanisms in this study, insignificantly

increasing UDP throughput values from 38.7 Mbps to 43.35 Mbps and 39.1 Mbps,

respectively.

6.3.3 Round-trip Time

This section presents the comparison of RTT before and after using six defenses on the

webserver using Windows Server 2012. The primary tool used in this study was TCPing,

which was the tool used to gather the delay values of the webserver.

 Figure 6.9: Round-trip Time After Using Defenses on Webserver Using Windows Server 2012

27.384

28.973

27.306

26.746 26.677
26.39 26.3

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

During
Attack

Load
Balancing

Anti-DDoS
Firewall

 IP Verify ACL
Threshold

Limit

 Hybrid
Method

R
TT

 [
m

s]

Defenses Mechanisms

During Attack

Load Balancing

Anti-DDoS Firewall

 IP Verify

 ACL

 Threshold Limit

 Hybrid Method

LOWER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

79

Scenario Defense Average RTT (ms) Standard Deviation

Before Attack - 0.990 0.016

During Attack

No Defense 27.384 0.063

Anti-DDoS Firewall 27.306 0.076

IP Verify 26.746 0.055

Load Balancing 28.973 0.037

ACLs 26.677 0.032

Threshold Limit 26.390 0.014

Hybrid Method 26.300 0.060

Table 6.9: Average RTT and Standard Deviation For 30 Runs After Using Defenses on Webserver Using

 Windows Server 2012

Figure 6.9 illustrates the average round-trip time for 30 runs after using DDoS defenses on

the webserver using Windows Server 2012. The result shows that the RTT before the attack

was 0.99ms. During the attack, however, this number significantly increased to 27.38ms. In

terms of defenses, the Hybrid Method and the Threshold Limit were the most effective

defenses in this study. Both solutions could decrease the average RTT from 27.38ms to

26.30ms and 26.39ms, respectively.

ACLs came in third, which reduced the RTT from 27.38ms to 26.67ms. IP Verify came in

fourth, which decreased the RTT to 26.746ms. The most inefficient defense in this study was

the Software Firewall, which insignificantly reduced the RTT from 27.38ms to 27.30ms.

Unlike other defenses, the Software Firewall dropped the attack packets at the victim

computer; therefore, the victim computer was still affected by the attack packets. The other

defenses, e.g., ACLs, IP Verify, Threshold Limit, and Hybrid Method, dropped the attack

packets at the router.

Network Load Balancing resulted in the highest RTT, which was approximately 28.97ms.

This number was even higher than the RTT value during the attack. The reason is that this

solution required the system resources to examine incoming packets and made load-

balancing decisions, and therefore imposed an overhead on network performance

(Microsoft, 2014).

 Evaluation of UDP Flood Attack on Windows Server 2012

80

6.3.4 Packet Loss

This section presents the comparison of the packet loss values before and after using six

defenses on the webserver using Windows Server 2012. The primary tool used in this study

was Iperf, which was the tool used to gather the packet loss values.

 Figure 6.10: Packet Loss Values After Using Defenses on Webserver Using Windows Server 2012

Scenario Defense Packet Loss (%) Standard Deviation

Before Attack - 0 -

During Attack

No Defense 56.17 0.042

Anti-DDoS Firewall 55.26 0.024

IP Verify 28.50 0.017

Load Balancing 51.16 0.050

ACLs 23.16 0.025

Threshold Limit 0.1 0.035

Hybrid Method 0.1 0.018

Table 6.10: Average Packet Loss and Standard Deviation For 30 Runs After Using Defenses on

 Webserver Using Windows Server 2012

Figure 6.10 presents a comparison of legitimate packet loss values after using DDoS

defenses on the webserver using Windows Server 2012. The result shows there was no

packet loss before the attack. During the attack, however, the number of legitimate packet

loss went up to 56.1%. In terms of defenses, the most effective defenses in this study were

Hybrid Method and Threshold Limit, which significantly reduced the packet loss value from

56.1% to 0.1%. IP Verify and ACLs moderately decreased the number of packet loss from

56.1% to 28.5%, and 23.1% respectively. The ineffective defenses in this study were

Network Load Balancing and the Software Firewall. Both solutions insignificantly reduced the

packet loss values from 56.1% to 51.1%, and 55.2% respectively.

56 55.26
51.16

28.5

23.16

0.1 0.1
0

10

20

30

40

50

60

During
Attack

 Anti
DDoS

Firewall

Load
Balancing

IP Verify ACL Threshold
Limit

 Hybrid
Method

P
ac

ke
t

Lo
ss

 [
%

]

Defense Mechanisms

During Attack

 Anti DDoS Firewall

Load Balancing

IP Verify

 ACL

 Threshold Limit

 Hybrid Method

LOWER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

81

6.3.5 CPU Utilization

This section shows the CPU utilization before and after using defenses on the webserver

using Windows Server 2012. The primary tool used in this study was Microsoft Resource

Monitor, which was the tool used to monitor the CPU usage on the server.

 Figure 6.11: CPU Utilization After Using Defenses on Webserver Using Windows Server 2012

Scenario Defense CPU Utilization (%)

Before Attack - 1-2

During Attack

No Defense 19-24

Anti-DDoS Firewall 25-26

IP Verify 18-20

Load Balancing 17-19

ACLs 16-18

Threshold Limit 2-3

Hybrid Method 2

Table 6.11: Average CPU Utilization For 30 Runs After Using Defenses on Webserver Using

 Windows Server 2012

Figure 6.11 illustrates the average CPU utilization before and after using DDoS defenses.

The result shows that the CPU usage before the attack was stable at around 1%. During the

attack, the CPU usage fluctuated between 19% and 24%.

In terms of defenses, the most effective defense in this study was the Hybrid Method, which

reduced the CPU usage from 24% to 2%. This number was similar to Threshold Limit, which

decreased the CPU utilization to 3%. ACLs came in third, and reduced the CPU usage from

24% to 16%. In terms of Network Load Balancing, the defense decreased the CPU usage to

approximately 18%. This figure was similar to IP Verify, which reduced the server‟s CPU to

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

C
P

U
 U

ti
liz

at
io

n
 [

%
]

Time [Seconds]

Without Attack

During Attack

ACL

Threshold Limit

Hybrid Method

IP Verify

Anti-DDoS Firewall

Load Balancing

LOWER IS BETTER

 Evaluation of UDP Flood Attack on Windows Server 2012

82

20%. Interestingly, the Software Firewall consumed the CPU utilization more than the other

defenses, at around 25%. This number was even higher than the CPU usage during the

attack. It is noted that the defenses (except DDoS firewall) did not reduce the CPU utilization

directly. Instead, they had dropped attack packets before the packets could enter the server.

As a result, the CPU did not have to work all the time in order to reply to the attack packets.

As explained in Section 3.2 (Characteristics of UDP flood attack) the victim computer will

send ICMP packets back to the source IP addresses when it receives UDP packets on the

closed ports.

6.4 Chapter Summary

This chapter presented the results from the tests conducted in the computer lab. Several

metrics, e.g., throughputs, delay, packet loss, jitter, and CPU utilization, were collected and

used to analyze the impact of a UDP flood attack on the webserver using Windows Server

2012. This chapter also evaluated six defenses, namely, Access Control Lists, Threshold

Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software Firewall.

The results showed that the performance of Windows Server 2012 was reduced during the

UDP flood attack. The TCP throughputs before the attack were constant at 86 Mbps. During

the attack, this number dropped significantly to 0.19 Mbps (Figure 6.1). The reason is that an

attacker had sent a large number of UDP packets to the server, and eventually caused

network congestion between the two nodes. The UDP throughputs before the attack were

around 86 Mbps. During the attack, the UDP throughputs dropped moderately to 38.3 Mbps

(Figure 6.2). The result showed that the RTT value generally increased as the attack packet

rate increased. The average RTT before the attack was 0.99ms, and significantly increased

to 27.38ms during the attack (Figure 6.3). The CPU usage before the attack was about 2%

and went up significantly to 24% during the attack (Figure 6.5).

After using the defenses on Windows Server 2012, the results showed that the performance

of Windows OS increased. The Hybrid Method and the Threshold Limit were the most

effective defenses against the UDP flood attack in all studies, whereas the Software Firewall

and Network Load Balancing were the least effective defenses (IP Verify, and ACLs were

average defenses). The Hybrid Method and Threshold Limit could increase the TCP

throughput from 0.19 Mbps (no defense) to 86.30 Mbps, while ACLs and IP Verify

moderately increased the TCP throughput to 18.48 Mbps and 15.67, respectively. On the

other hand, Network Load Balancing and the Software Firewall only increased the TCP

throughput from 0.19 Mbps (no defense) to 0.28 Mbps, and 0.25 Mbps respectively (Figure

6.7). The UDP throughput result showed that Hybrid Method and Threshold Limit

 Evaluation of UDP Flood Attack on Windows Server 2012

83

significantly increased the UDP throughput from 38.7 Mbps (no defense) to 86.5 Mbps

whereas Network Load Balancing and the Software Firewall only increased the TCP

throughput from 38.7 Mbps (no defense) to 43.35 Mbps, and 39.10 Mbps respectively

(Figure 6.8). The RTT result showed that Hybrid Method and Threshold Limit were the most

effective defenses in this study. Both defenses could decrease the average RTT from

27.38ms (no defense) to 26.30ms and 26.39ms respectively. On the other hand, Network

Load Balancing increased the RTT from 27.38ms (no defense) to 28.97ms (Figure 6.9). The

reason is that this solution required the system resources to examine incoming packets and

make load-balancing decisions, and therefore imposed an overhead on network

performance. The Hybrid Method and Threshold Limit could reduce the CPU utilization

during the attack from 24% (no defense) to 2%, while ACLs and IP Verify reduced the CPU

utilization to 16% and 18%, respectively. On the other hand, the Software Firewall consumed

more CPU utilization, i.e., 25%, than other the defenses.

The next chapter covers the evaluation of the UDP flood attack using Linux Ubuntu 13.

84

CHAPTER 7

EVALUATION OF UDP FLOOD ATTACK ON LINUX

UBUNTU 13

This chapter covers the analysis of the results gathered from experiments using Linux

Ubuntu 13. Section 7.1 covers the impact of a UDP flood attack on throughputs based on

TCP and UDP applications. Section 7.2 shows the comparison of the computer performance

during a UDP flood attack between Linux Ubuntu 13 and Windows Server 2012 using round-

trip time, packet loss, CPU utilization, and jitter. Section 7.3 covers the analysis of six

defense mechanisms, namely, Access Control Lists, Threshold Limit, Hybrid Defense, IP

Verify, Network Load Balancing, and DDoS Software Firewall. Section 7.4 provides a

summary of the comparison of the results of the flood defenses between Linux Ubuntu 13

and Windows Server 2012.

7.1 Impact of UDP Flood Attack on Throughputs

This section covers the impact of the UDP flood attack on throughputs before and during the

attack. TCP and UDP were selected as the transmission protocols. The primary tools used in

this study were Iperf and Hping3. The former was used to fill up the Ethernet link at 86.4

Mbps while Hping3, which was the attack tool, was used to generate attack traffic at 156.2

Mbps. To ensure high data accuracy, the test was repeated 30 times and result average and

runs continued until the standard deviation of results was below 0.07% of the average. The

evaluation process and measurement tools used in this chapter were discussed in Section

4.3.2.2 and Section 5.3. In addition, in order to be consistent and produce accurate data, all

of the hardware used was kept identical from Chapter 6.

7.1.1 TCP Throughput

This section presents the impact of a UDP flood attack on throughputs between Linux

Ubuntu 13 and Windows Server 2012. TCP is selected as the transmission protocol, which is

used for webserver traffic. The Y axis shows the number of throughputs in megabits per

second, while the X axis shows the length of the experiment in seconds.

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

85

 Figure 7.1: Comparison of TCP Throughputs Between Linux Ubuntu 13 and Windows Server 2012

Linux Ubuntu 13 Time (Seconds) Throughput (Mbps) Standard Deviation

Before Attack All 94.10 0.010

During Attack

2 32.96 0.067

3 0.39 0.072

After 4 Seconds 0.36-0.45 -

Table 7.1: Average TCP Throughputs and Standard Deviation for 30 Runs Before and During Attack

 on Linux Ubuntu 13

Figure 7.1 illustrates the TCP throughput values between Linux and Windows platform. On

the whole, Linux Ubuntu 13 outperformed Windows Server 2012 in terms of the number of

throughputs before and during the attack. The result shows that the TCP throughput value

before the attack on the Linux platform was constant at 94 Mbps, which was higher than

Windows at about 8 Mbps. During the attack, however, the TCP throughput value on Linux

platform significantly dropped from 94 Mbps to 32.96 Mbps within 2 seconds. Afterwards, it

was stable at around 0.36 to 0.45 Mbps. In terms of Windows, the number of TCP

throughputs reduced from 86 Mbps to 32 Mbps within 2 seconds. After that, it was constant

at around 0.19 to 0.24Mbps.

7.1.2 UDP Throughput

This section presents the impact of a UDP flood attack on throughputs between Linux

Ubuntu 13 and Windows Server 2012. UDP is selected as the transmission protocol, which

is used for VoIP applications. The Y axis shows the number of throughputs in megabits per

second, while the X axis shows the length of the experiment in seconds.

32.7

86 86.4

32

0.36 0.35

94.1 94.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TC
P

 T
h

ro
u

gh
p

u
t

[M
b

p
s]

Time [Seconds]

Before Attack (Windows)

During Attack (Windows)

Before Attack (Linux)

During Attack (Linux)

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

86

 Figure 7.2: Comparison of UDP Throughputs Between Linux Ubuntu 13 and Windows Server 2012

Linux Ubuntu 13 Time (Seconds) Throughput (Mbps) Standard Deviation

Before Attack All 95.70 0.010

During Attack

2 59.85 0.034

3 43.14 0.010

After 4 Seconds 42.9-43.8 -

Table 7.2: Average UDP Throughputs and Standard Deviation for 30 Runs Before and During Attack

 on Linux Ubuntu 13

Figure 7.2 illustrates the UDP throughput values between Linux and Windows platform. The

result shows that the UDP throughput value before the attack on Linux platform was

constant at 95.7 Mbps, which was higher than Windows at about 10Mbps. During the attack,

however, the UDP throughput value on Linux platform dropped moderately from 95.7 Mbps

to 59.85 Mbps within 2 seconds. Afterwards, it was stable at around 42.9 Mbps to 43.8

Mbps. In terms of Windows OS, the number of UDP throughputs reduced from 86.5 Mbps to

60.4Mbps within 2 seconds. After that, it was constant at around 38 to 39Mbps.

A plausible speculation that could explain why Linux Ubuntu 13 outperformed Windows 2012

is the way kernel network buffers are allocated and used by Linux platforms (Kolahi & Li,

2011). That is, Linux operating systems have a pre-allocation of fixed-sized memory buffers

so that when a network application sends data, these buffers will be used to avoid the

overhead associated with buffer allocations.

86.5 86.5 86.4

59.6

38.5 38.3 39.1

95.7 95.7 95.7

43.1 43.0 43.2

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U
D

P
 T

h
ro

u
gh

p
u

t
[M

b
p

s]

Time [Seconds]

Before Attack (Windows)

During Attack (Windows)

Before Attack (Linux)

During Attack (Linux)

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

87

7.2 Impact of UDP Flood Attack on Linux Ubuntu 13 and Windows Server 2012

This section covers the impact of a UDP flood attack using Linux Ubuntu 13 and Windows

Server 2012. The primary tools used in this study were the Webserver Stress Tool and

Hping3. The former generated the connection request from users to the webserver assuming

on average 10 users per second, while Hping3 was used to generate the attack traffic at

13000 packets per second (unless the attack packet rate and packet size are otherwise

defined in the next sections). The monitoring PC used gathered DDoS parameters while

legitimate or attack traffic was launched. To ensure high data accuracy, the test was

repeated 30 times and data average and runs continued until standard deviation of results

was below 0.07% of the average.

7.2.1 Round-trip Time

This section presents a comparison of the RTT results between Linux Ubuntu 13 and

Windows Server 2012. The primary tool used in this study was TCPing, which was the tool

used to gather the delay values of the victim computers.

 Figure 7.3: Comparison of RTT Results Between Linux Ubuntu 13 and Windows Server 2012

Operating System Scenario Average RTT Standard Deviation

Windows Before Attack 0.99ms 0.016

During Attack 27.38ms 0.059

 Linux Before Attack 0.62ms 0.050

During Attack 26.42ms 0.067

 Table 7.3: Average RTT and Standard Deviation for 30 Runs Before and During Attack on

 Linux Ubuntu 13

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
TT

 [
m

s]

Number of Runs

Before Attack Windows

During Attack Windows

Before Attack Linux

During Attack Linux

Packet rate = 13,000pps

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

88

Figure 7.3 illustrates the average of RTT for 30 runs before and during the UDP flood attack.

On the whole, the result shows that Microsoft Server 2012 had higher delay values than

Linux Ubuntu 13. Without the attack, the average RTT of Windows platform was 0.99ms,

while the average RTT of Linux platform was 0.62ms. During the attack, the RTT of

Windows Server 2012 went up significantly from 0.99 to 27.38ms, while the RTT of Linux

Ubuntu 13 increased from 0.62 to 26.42ms. Since the hardware and monitoring tools used

were identical from Chapter 6 and only the operating system was changed, it can be said,

therefore, that Linux Ubuntu 13 withstood the UDP flood attack better than Windows Server

2012 in this study.

7.2.2 Packet Loss

This section shows a comparison of legitimate packet loss results between Linux Ubuntu 13

and Windows Server 2012. The primary tool used in this study was Iperf, which was the tool

used to gather the packet loss values. The test was run 30 times using attack packet sizes

ranging from 64 to 1518 Bytes, while the attack packet rate was constant at 13,000 packets

per second. These tests generated attack traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7

Mbps, 101.5 Mbps, 126.9 Mbps, and 150.5 Mbps respectively.

Figure 7.4: Comparison of Legitimate Packet Loss Results Between Linux Ubuntu 13 and

 Windows Server 2012

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 1280 1518

Le
gi

ti
m

at
e

 P
ac

ke
t

Lo
ss

 [
%

]

Size of Attack Packet [Bytes]

Windows Server 2012

Linux Ubuntu 13

Packet rate = 13000pps

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

89

Operating System Attack Packet Size Packet Loss (%) Standard Deviation

Windows

256 15.215 0.021

512 56.170 0.042

1024 61.215 0.023

1280 65.466 0.047

1518 75.200 0.031

Linux

256 10.897 0.019

512 54.900 0.015

1024 60.142 0.098

1280 63.247 0.048

1518 74.211 0.057

Table 7.4: Average Legitimate Packet Loss and Standard Deviation For 30 runs Before and During Attack

 on Linux Ubuntu 13

Figure 7.4 illustrates the average of packet loss values before and during the UDP flood

attack. On the whole, the result shows that the legitimate packet loss value increased as the

attack packet size increased. There was no packet loss on either operating system when

using the attack packet size of 64, and 128 Bytes. However, on frame size 256 Bytes (25.3

Mbps), the packet loss on Windows Server 2012 went up moderately to 15.2% and 10.8%

for Linux Ubuntu 13. Regarding frame size 512 Bytes (50.7 Mbps), the packet loss value of

Windows and Linux platform significantly increased to 56.1% and 54.9%, respectively. On

the largest frame size, 1518 Bytes (150.5 Mbps), the packet loss went up to 75.2% for

Windows, and 74.2% for Linux.

7.2.3 CPU Utilization

This section presents a comparison of CPU utilization before and during a UDP flood attack

between Linux Ubuntu 13 and Windows Server 2012. The primary tool used in this study

was Microsoft Resource Monitor, which was the tool used to monitor the CPU usage on

Windows Server 2012. For Linux operating system, we used the “top” command to find out

the Linux CPU usage.

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

90

 Figure 7.5: Comparison of CPU Utilization Results Between Linux Ubuntu 13 and Windows Server 2012

Scenario Time (Seconds) CPU Utilization (%) Standard Deviation

During Attack

(Windows)

2 9.36 0.150

3 19.52 0.077

4 21.28 0.080

After 5 Seconds 19-24 -

During Attack

(Linux)

2 9.36 0.073

3 18.01 0.087

4 20.9 0.059

After 5 Seconds 23.5-24.9 -

Table 7.5: Average CPU Utilization and Standard Deviation for 30 Runs Before and During Attack on

 Linux Ubuntu 13

Figure 7.5 illustrates the CPU utilization before and during a UDP flood attack. In terms of

Windows Server 2012, the CPU usage before the attack was constant at 1% to 2%. During

the attack, however, the CPU utilization went up approximately 10% within 2 seconds and

increased to 22% in 4 seconds. Afterwards, it fluctuated between 19% and 24%.

In terms of Linux Ubuntu 13, the result shows that the CPU usage before the attack was

slightly lower than for Windows, which was around 0.3 to 0.7%. During the attack, Linux

Ubuntu 13 demonstrated the better performance in terms of stability; the CPU utilization

increased at approximately 6% within 2 seconds. Afterwards, it remained steady at 23.5% to

24.9%.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

C
P

U
 U

ti
liz

at
io

n
 [

%
]

Time [Seconds]

During Attack (Windows)

Before Attack (Windows)

During Attack (Linux)

Before Attack (Linux)

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

91

7.2.4 Jitter

This section presents a comparison of legitimate jitter results on UDP applications between

Linux Ubuntu 13 and Windows Server 2012. The primary tool used in this study was Iperf,

which was the tool used to gather the jitter values of the victim computers. The attack packet

sizes used in this study were 64, 128, 256, 512, 1024, 1280, and 1518 Bytes, while the

attack packet rate was constant at 13000 packets per second. The tests generated attack

traffic at 6.34 Mbps, 12.69 Mbps, 25.3 Mbps, 50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and

150.5 Mbps respectively.

 Figure 7.6: Comparison of Jitter Results Between Linux Ubuntu 13 and Windows Server 2012

Attack Packet Size (Bytes) Jitter (ms) Standard Deviation

Before Attack 0.065 0.015

64 0.133 0.018

128 0.128 0.027

256 0.139 0.021

512 5.73 0.045

1024 15.72 0.068

1280 19.38 0.054

1518 29.28 0.081

Table 7.6: Average Jitter and Standard Deviation for 30 Runs Before and During Attack on Linux

 Ubuntu 13

Figure 7.6 illustrates the average jitter value results on Linux and Windows platform. On the

whole, Windows Server 2012 generated more jitter than Linux Ubuntu 13. In terms of Linux

platform, the result shows that the legitimate jitter value before the attack was 0.065ms. On

frame sizes 64, 128 and 256 Bytes (6.3 Mbps, 12.6 Mbps, and 25.3 Mbps), Linux generated

very similar jitter values, which were 0.133ms, 0.128ms, and 0.139ms, respectively. The

10.47

22.16

31.65

41.13

0.065 0.133 0.128 0.139

5.73

15.72
19.38

29.28

0

5

10

15

20

25

30

35

40

45

Before
Attack

 64 128 256 512 1024 1280 1518

 J
it

te
r

[m
s]

Size of Attack Packet [Bytes]

Windows Server 2012

Linux Ubuntu 13

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

92

most noticeable feature of this graph is that the jitter value significantly increased when using

attack packet sizes between 512 and 1518 Bytes (50.7 Mbps, 101.5 Mbps, 126.9 Mbps, and

150.5 Mbps). By using 512 Bytes (50.7 Mbps), the average jitter value went up from 0.06 to

5.73ms. The jitter value increased to 19.38ms if the attack packet size was 1024 Bytes

(101.5 Mbps). On the largest frame size, 1518 Bytes (150.5 Mbps), the average jitter value

increased significantly from 0.06 to 29.28ms.

7.3 Comparisons of Defense Mechanisms on Linux Ubuntu 13

This section provides an analysis of defense mechanisms against a UDP flood attack on

Linux Ubuntu 13. There were six defenses used in this study, namely, Access Control Lists,

Threshold Limit, Hybrid Defense, IP Verify, Network Load Balancing, and DDoS Software

Firewall. The efficiency of each defense was evaluated by comparing throughputs, delay,

packet loss, and CPU utilization values before and after using the defenses. To ensure high

data accuracy, the test was repeated 30 times and result average and runs continued until

standard deviation of results was below 0.07% of the average. The evaluation process and

experimental set-up of defenses were discussed in Section 4.3.2.2 and Section 5.2.

7.3.1 TCP Throughput

This section covers the impact of a UDP flood attack on throughputs after using defenses.

TCP was selected as the transmission protocol, which was used for webserver traffic. The

primary tools used in this study were Iperf and Hping3. The former was used to fill up the

Ethernet link at 86.4 Mbps, while Hping3, which was the attack tool, was used to generate

attack traffic at 156.2 Mbps.

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

93

 Figure 7.7: TCP Throughput Values After Using Defenses on Linux Ubuntu 13

Scenario Defense Throughput (Mbps) Standard Deviation

Before Attack - 94.1 0.003

During Attack

No Defense 0.36 0.146

Hybrid Method 94.0 0.002

Threshold Limit 94.0 0.001

ACLs 53.37 0.016

Load Balancing 47.39 0.011

IP Verify 46.93 0.018

Software Firewall 0.64 0.052

Table 7.7: Average TCP Throughput Values and Standard Deviation for 30 Runs After Using Defenses on

 Linux Ubuntu 13

Figure 7.7 presents the TCP throughput values after using six defenses. The result shows

that the TCP throughput value before the attack was stable at 94.1 Mbps. This was higher

than the TCP throughput on Windows Server 2012 at about 7.5 Mbps (as shown in Figure

6.7). During the attack, the TCP throughput on Linux platform significantly dropped from 94.1

Mbps to 0.36 Mbps, while the TCP throughput on Windows dropped from 86.60 Mbps to

0.19 Mbps.

The most effective defenses in this study were the Hybrid Method and Threshold Limit in

which the number of throughput values before the attack and after using solutions were

almost the same, at 94 Mbps. ACLs came in third, and increased the throughput value from

0.36 Mbps to 53.37 Mbps. This number was marginally higher than Network Load Balancing

and IP Verify at 5.98 Mbps and 6.44 Mbps, respectively. The most ineffective defense

mechanism in this study was the Software Firewall, which only increased the TCP

throughput value from 0.36 Mbps to 0.64 Mbps.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

TC
P

 T
h

ro
u

gh
p

u
t

[M
p

b
s]

Time [Seconds]

Before Attack

During Attack

ACL

IP Verify

Threshold Limit

Hybrid Method

Software Firewall

Load Balancing

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

94

7.3.2 UDP Throughput

This section covers the impact of a UDP flood attack on throughputs after using defenses.

UDP was selected as the transmission protocol, which was used for VoIP traffic. The primary

tools used in this study were Iperf and Hping3. The former was used to fill up the Ethernet

link at 86.4 Mbps, while Hping3, which is the attack tool, generated the attack traffic at 156.2

Mbps.

 Figure 7.8: UDP Throughput Values After Using Defenses on Linux Ubuntu 13

Scenario Defense Throughput (Mbps) Standard Deviation

Before Attack - 95.7 0.004

During Attack

No Defense 43.04 0.010

Hybrid Method 95.6 0.005

Threshold Limit 95.6 0.003

ACLs 68.55 0.007

IP Verify 65.35 0.006

Load Balancing 64.15 0.007

Software Firewall 44.07 0.011

Table 7.8: Average UDP Throughput Values and Standard Deviation For 30 Runs After Using Defenses on

 Linux Ubuntu 13

Figure 7.8 presents a comparison of UDP throughput values after using six defenses on

Linux Ubuntu 13. The result shows that the UDP throughput value before the attack was

stable at 95.7 Mbps. This number was higher than the UDP throughput on Windows Server

2012 at about 9.1 Mbps (as shown in Figure 6.8). During the attack, this number dropped

moderately from 95.70 Mbps to 43.04 Mbps, while the UDP throughput on Windows platform

dropped from 86.60 Mbps to 38.7 Mbps.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

U
D

P
 T

h
ro

u
gh

p
u

t
[M

b
p

s]

Time [Seconds]

Before Attack

During Attack

ACL

IP Verify

Threshold Limit

Hybrid Method

Software Firewall

Load Balancing

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

95

In terms of defenses, the most effective solutions in this study were the Hybrid Method and

the Threshold Limit. Both defenses significantly increased UDP throughput values from

43.04 Mbps to 95.6 Mbps. ACLs came in third, and increased the number of user

throughputs from 43.04 Mbps to 68.55 Mbps. This number was marginally higher than IP

Verify and Network Load Balancing at 3.2 Mbps, and 4.4 Mbps, respectively. The most

ineffective defense in this study was the Software Firewall, which insignificantly increased

the UDP throughput value from 43.04 Mbps to 44.07 Mbps.

7.3.3 Round-trip Time

This section presents the comparison of RTT before and after using six defenses on Linux

Ubuntu 13. The primary tool used in this study was TCPing, which was the tool used to

gather the delay values of the webserver.

 Figure 7.9: Round-trip Time After Using Defenses on Linux Ubuntu 13

Scenario Defense Average RTT (ms) Standard Deviation

Before Attack - 0.621 0.050

During Attack

No Defense 26.422 0.017

Load Balancing 26.487 0.023

Software Firewall 26.270 0.028

ACLs 26.007 0.011

Threshold Limit 25.980 0.011

Hybrid Method 25.874 0.017

IP Verify 25.604 0.018

 Table 7.9: Average RTT and Standard Deviation for 30 Runs After Using Defenses on Linux Ubuntu 13

26.422 26.487

26.27

26.007 25.98
25.874

25.604

25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

During
Attack

Load
Balancing

Software
Firewall

ACL Threshold
Limit

Hybrid
Method

 IP Verify

R
TT

 [
m

s]

Defenses Mechanisms

During Attack

Load Balancing

Software Firewall

ACL

Threshold Limit

Hybrid Method

 IP Verify

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

96

Figure 7.9 illustrates the average round-trip time for 30 runs after using DDoS defenses on

Linux Ubuntu 13. On the whole, the result shows that Linux Ubuntu 13 produced delay

values lower than Windows Server 2012 (as shown in Figure 6.9). The RTT value before the

attack on the Linux platform was 0.62ms, and increased to 26.42ms during the attack.

In terms of defenses, IP Verify was the most effective defense in this study, as it reduced the

average RTT from 26.42ms to 25.60ms. It can be noted that the most effective defense for

Windows Server 2012 was the Hybrid Method, which reduced the RTT from 27.38ms to

26.30ms (Figure 6.9).

In terms of Linux Ubuntu 13, the Threshold Limit, Hybrid Method, and the Software Firewall

could decrease the average RTT during the attack to 25.98ms, 25.87ms, and 26.27ms,

respectively. The most inefficient defense in this study was Network Load Balancing, which

increased the RTT from 26.422ms to 26.487ms. This is caused by the switching and routing

process as the router needs to examine incoming packets and make load-balancing

decisions, and therefore imposes an overhead on network performance (Microsoft, 2014).

7.3.4 Packet Loss

This section presents the comparison of the packet loss values before and after using six

defenses on Linux Ubuntu 13. The primary tool used in this study was Iperf, which was the

tool used to gather the packet loss values.

 Figure 7.10: Packet Loss Values After Using Defenses on Linux Ubuntu 13

54.9 54.1

33 31.5
28.7

0.1 0.1
0

10

20

30

40

50

60

During
Attack

 Anti
DDoS

Firewall

Load
Balancing

IP Verify ACL Threshold
Limit

 Hybrid
Method

P
ac

ke
t

Lo
ss

 [
%

]

Defense Mechanisms

During Attack

 Anti DDoS Firewall

Load Balancing

IP Verify

 ACL

 Threshold Limit

 Hybrid Method

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

97

Scenario Defense Packet Loss (%) Standard Deviation

Before Attack - 0 -

During Attack

No Defense 54.9 0.015

Anti-DDoS Firewall 54.1 0.008

IP Verify 31.5 0.015

Load Balancing 33.0 0.016

ACLs 28.7 0.014

Threshold Limit 0.1 -

Hybrid Method 0.1 -

Table 7.10: Average Packet Loss and Standard Deviation For 30 Runs After Using Defenses on

 Linux Ubuntu 13

Figure 7.10 presents a comparison of the legitimate packet loss values after using DDoS

defenses. The result shows there was no packet loss before the attack. During the attack,

however, the packet loss went up to 54.9%. This number was slightly lower than the packet

loss on Windows Server 2012 at about 1% (as shown in Figure 6.10).

In terms of defenses, the most effective defenses in this study were the Hybrid Method and

Threshold Limit, which significantly reduced the packet loss value from 54.9% to 0.1%.

ACLs, Network Load Balancing, and IP Verify moderately decreased the packet loss to

28.7%, 33%, and 31.5%, respectively. The most ineffective defense in this study was the

software firewall, which reduced the packet loss value from 54.9% to 54.1%.

Comparing the packet loss results between the two operating systems, it can be observed

that the packet losses after using solutions on Linux Ubuntu 13 and Windows Server 2012

were almost the same. However, the results showed that ACLs and IP Verify outperformed

on Windows platform, while Network Load Balancing and the software firewall outperformed

on Linux platform (as compared to Figure 6.10).

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

98

7.3.5 CPU Utilization

This section shows the CPU utilization before and after using defenses on Linux Ubuntu 13.

The primary tool used in this study was Microsoft Resource Monitor, which was the tool used

to monitor the CPU usage on the server.

 Figure 7.11: CPU Utilization After Using Defenses on Linux Ubuntu 13

Scenario Defense CPU Utilization (%)

Before Attack - 0.3-0.7

During Attack

No Defense 23-25

Software Firewall 19-21

Load Balancing 15-18

ACLs 13-15

IP Verify 8-10

Threshold Limit 3

Hybrid Method 1-2

 Table 7.11: Average CPU Utilization For 30 Runs After Using Defenses on Linux Ubuntu 13

Figure 7.11 illustrates the average CPU utilization after using DDoS defenses on Linux

Ubuntu 13. The results show that the CPU usage before the attack was stable at around 0.3

to 0.7%, which was slightly lower than on Windows Server 2012 at about 1 to 2% (as shown

in Figure 6.11). During the attack, the CPU usage of Linux platform fluctuated between 23%

and 25%.

In terms of defenses, the most effective defense in this study was the Hybrid Method, which

reduced the CPU usage from 25% to 2%. This was similar to the Threshold Limit, which

decreased the CPU utilization to 3%. IP Verify came in third, and reduced the CPU usage

from 25% to 10%. In terms of ACLs, the CPU usage went down from 25% to 15%. This

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

C
P

U
 U

ti
liz

at
io

n
 [

%
]

Time [Seconds]

Without Attack

During Attack

ACL

Threshold Limit

Hybrid Method

IP Verify

Software Firewall

Load Balancing

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

99

figure was similar to Network Load Balancing, which reduced the server‟s CPU usage to

18%. The most inefficient defense in this study was the Software Firewall, which slightly

reduced the CPU utilization from 25% to 21%.

7.4 Comparison of Defenses Against UDP Flood Attack between Linux and Windows

This section shows a summary of result comparison of the flood defenses between Linux

Ubuntu 13 and Windows Server 2012. The metrics used for comparison are TCP throughput

(Section 7.4.1), UDP throughput (Section 7.4.2), round-trip time (Section 7.4.3), packet loss

value (Section 7.4.4), and CPU utilization (Section 7.4.5).

7.4.1 TCP Throughput after Using Defenses

In terms of TCP throughputs using Windows Server 2012, the most effective defenses were

the Hybrid Method and Threshold Limit, which increased the throughput value from 0.19

Mbps (no defenses) to 86.30 Mbps. ACLs and IP Verify moderately increased the TCP

throughput from 0.19 Mbps to 18.48 Mbps and 15.67 Mbps, respectively (Figure 6.7). The

most effective defenses for Linux Ubuntu 13 were also the Hybrid Method and Threshold

Limit, which significantly increased the throughput value from 0.36 Mbps (no defenses) to 94

Mbps. ACLs and IP Verify moderately increased the TCP throughput from 0.36 Mbps to

53.37 Mbps and 46.93 Mbps, respectively (Figure 7.7).

7.4.2 UDP Throughput after Using Defenses

The most effective defenses for Windows Server 2012 were the Hybrid Method and

Threshold Limit, which increased the throughput value from 38.7 Mbps (no defenses) to

86.40 Mbps. ACLs and IP Verify moderately increased the UDP throughput from 38.7 Mbps

to 66.01 Mbps and 61.96 Mbps, respectively. On the other hand, Network Load Balancing

and Software Firewall could only increase the UDP throughput from 38.7 Mbps to 43.35

Mbps and 39.10 Mbps, respectively (Figure 6.8). In terms of Linux results, the Hybrid

Method and Threshold Limit could significantly increase the UDP throughput from 43.04

Mbps (no defenses) to 95.6 Mbps. ACLs and IP Verify moderately increased the UDP

throughput from 43.04 Mbps to 68.55 Mbps and 65.35 Mbps, respectively (Figure 7.8).

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

100

7.4.3 Round-trip Time after Using Defenses

The Hybrid Method and Threshold Limit were the most effective defenses for Windows

Server 2012. These solutions decreased the average RTT from 27.38ms to 26.30ms and

26.39ms, respectively. ACLs and IP Verify reduced the RTT from 27.38ms to 26.67ms and

26.74ms, respectively. On the other hand, Network Load Balancing resulted in the highest

RTT, which was approximately 28.97ms (Figure 6.9). In terms of Linux results, IP Verify

outperformed other defenses, which reduced the RTT value from 26.42ms to 25.60ms. The

Threshold Limit, Hybrid Method, and Software Firewall could decrease the average RTT

during the attack from 26.42ms to 25.98ms, 25.87ms, and 26.27ms, respectively. The most

inefficient defense for Linux OS was Network Load Balancing, which increased the RTT from

26.42ms to 26.48ms (Figure 7.9).

7.4.4 Packet Loss after Using Defenses

The most effective defenses for Windows Server 2012 were the Hybrid Method and

Threshold Limit, which significantly reduced the packet loss value from 56.1% to 0.1%. IP

Verify and ACLs moderately decreased the packet loss from 56.1% to 28.5%, and 23.1%,

respectively. On the other hand, Network Load Balancing and Software Firewall

insignificantly reduced the packet loss values from 56.1% to 51.1%, and 55.2%, respectively

(Figure 6.10). In terms of Linux results, the Hybrid Method and Threshold Limit outperformed

the other defenses, both of which significantly reduced the packet loss value from 54.9% to

0.1%. ACLs, Network Load Balancing, and IP Verify moderately decreased the packet loss

to 28.7%, 33%, and 31.5%, respectively. The most ineffective defense in this study was

Software Firewall, which only reduced the packet loss value from 54.9% to 54.1% (Figure

7.10).

7.4.5 CPU Utilization after Using Defenses

In terms of Windows results, the Hybrid Method and Threshold Limit outperformed the other

defenses, and significantly reduced the CPU usage from 24% to 2%. ACLs, Load Balancing,

and IP Verify moderately decreased the server‟s CPU usage from 24% to 16%, 17%, and

18%, respectively. Interestingly, the Software Firewall consumed more CPU utilization than

the other defenses, at around 25% (Figure 6.11). The most effective defenses for Linux

platform were the Hybrid Method and Threshold Limit, both of which reduced the CPU usage

from 25% to 2%. IP Verify, ACLs, and Load Balancing moderately decreased the victim

computer‟s CPU usage to 8%, 13%, and 15%, respectively. On the other hand, the Software

Firewall slightly reduced the CPU utilization from 25% to 21% (Figure 7.11).

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

101

7.5 Chapter Summary

This chapter presented the results on computer performance during a UDP flood attack for

Linux Ubuntu 13 and the results compared with Windows Server 2012. This chapter also

evaluated six defenses, namely, Access Control Lists, Threshold Limit, Hybrid Defense, IP

Verify, Network Load Balancing, and DDoS Software Firewall.

The results showed that the performance of Linux Ubuntu 13 was reduced during a UDP

flood attack. The TCP throughput before the attack was constant at 94 Mbps, and dropped

significantly to 0.36 Mbps during the attack (Figure 7.1). The UDP throughput before the

attack was 95.7 Mbps, and it dropped moderately to 43.9 Mbps during the attack (Figure

7.2). The RTT before the attack was 0.62ms, and it increased to 26.42ms during the attack

(Figure 7.3). Before the attack, the CPU utilization was constant at 0.3% and went up to 25%

during the attack (Figure 7.5).

After using the defenses, the results showed that the performance of Linux Ubuntu 13 was

increased. The Hybrid Method and Threshold Limit were the most effective defenses against

a UDP flood attack in most of the studies, whereas the Software Firewall and Network Load

Balancing were the least effective defenses. The Hybrid Method and Threshold Limit could

increase the TCP throughput from 0.36 Mbps to 94 Mbps (Figure 7.7), and increased the

UDP throughput from 43.04 Mbps to 95.6 Mbps (Figure 7.8). The RTT result showed that IP

Verify could reduce the RTT from 26.42ms to 25.60ms, while the Hybrid Method reduced the

RTT from 26.42 to 25.87ms (Figure 7.9). The Hybrid Method and Threshold Limit could

significantly reduce the CPU usage from 25% (during the attack) to 2%, whereas IP Verify,

ACLs, Network Load Balancing, and the Software Firewall only moderately reduced the CPU

utilization between 8% and 21% (Figure 7.11).

When comparing the operating systems‟ performance, it can be said that Linux Ubuntu 13

could withstand a UDP flood attack better than Windows Server 2012. The result showed

that the TCP throughput before the attack on Linux platform was constant at 94 Mbps, which

was higher than Windows at about 8 Mbps. During the attack, the throughput values of both

operating systems significantly dropped to 0.36 Mbps and 0.19 Mbps, respectively (Figure

7.1). The UDP throughput before the attack on Linux platform was constant at 95.7 Mbps,

which was higher than Windows at about 10Mbps. During the attack, the UDP throughput of

Linux and Windows OS dropped moderately to 43.9 Mbps and 38.3 Mbps, respectively

(Figure 7.2). Without the attack, the average RTT of Windows platform was 0.99ms, which

was higher than Linux platform at 0.36ms. During the attack, the average RTT of Windows

Server 2012 went up to 27.38ms, while the RTT of Linux Ubuntu 13 increased to 26.42ms

 Evaluation of UDP Flood Attack on Linux Ubuntu 13

102

(Figure 7.3). Windows Server 2012 utilized the CPU resource more than Linux Ubuntu 13 at

approximately 0.7% (before the attack). During the attack, Linux Ubuntu 13 demonstrated

the better performance in terms of stability; the CPU utilization remained steady at around

23.5% while the CPU utilization of Windows Server 2012 fluctuated between 19% and 24%.

When comparing the defenses between the two operating systems, it can be said that the

Hybrid Method and Threshold Limit were the most effective defenses against a UDP flood

attack in most studies, whereas the Software Firewall and Network Load Balancing were the

least effective defenses (IP Verify, and ACLs were average defenses). The Hybrid Method

and Threshold Limit could increase the TCP throughput from 0.36 Mbps to 94 Mbps (for

Linux Ubuntu 13), and from 0.19 Mbps to 86.4 Mbps (for Windows Server 2012). In terms of

UDP throughputs, the Hybrid Method and Threshold Limit increased the UDP throughput

from 43.04 Mbps to 95.6 Mbps (Linux Ubuntu 13), and from 38.7 Mbps to 86.5 Mbps

(Windows Server 2012). The RTT results after using the defenses showed that the Hybrid

Method was the most effective defense for Windows OS, which reduced the RTT from

27.38ms to 26.30ms (Figure 6.9), while IP Verify was the most effective defense for Linux

OS, which reduced the RTT from 26.42ms to 25.60ms (Figure 7.9). The Hybrid Method and

Threshold Limit could reduce the CPU usage of Windows OS during an attack from 24% to

2% (Figure 6.11), and from 25% to 2% for Linux Ubuntu 13 (Figure 7.11).

The next chapter covers the discussion of the results obtained in Chapter 6 and Chapter 7.

Summary Conclusions and Future Works

103

CHAPTER 8

SUMMARY, CONCLUSIONS, AND FUTURE WORKS

A revolution occurred in the world of computers and communication with the advent of the

Internet. This technology has become increasingly important to our current society; it has

changed our way of communication, business modes, and made information publicly

accessible quickly and easily, and put it within easy reach. However, along with the

advantages of the Internet, there are also disadvantages. There is no absolute security in

the Internet world, and hackers can use the Internet to launch many different types of attacks

on a targeted network, one of which is DDoS attacks.

In this research, new results were obtained to evaluate the impact of a UDP flood attack,

which was the type of DDoS attack used in this study. Tests were conducted on computers

using the latest version of Windows and Linux platforms, namely, Windows Server 2012 and

Linux Ubuntu 13. This research also produced new evaluation results on various defense

mechanisms such as Access Control Lists, Threshold Limit, IP Verify, Hybrid Method,

Network Load Balancing, and Software Firewall.

The results showed that the performance of Windows Server 2012 (e.g., throughputs, round-

trip time, packet loss, CPU utilization, and jitter) reduced during the UDP flood attack. The

TCP throughput before the attack was constant at 86 Mbps, and it significantly dropped to

0.19 Mbps during the attack. The UDP throughput before the attack was constant at 86

Mbps, and it went down to 38.5 Mbps during the attack. The RTT before the attack was

0.99ms, and it increased to 27.38ms during the attack. The packet loss result showed that

there was no legitimate packet loss before the attack. During the attack, the packet loss

value went up to 56.1%, 61.2%, 65.4%, and 75.2% when using the attack packet sizes of

512 Bytes, 1024 Bytes, 1280 Bytes, and 1512 Bytes, respectively. The CPU utilization of

Windows Server 2012 before the attack was constant at 2%. During the attack, the CPU

usage went up to 24%. The jitter value before the attack was 0.66ms. During the attack, the

jitter values went up slightly when using the attack packet sizes between 64, 128, and 256

Bytes (at 0.92ms, 1.04ms, and 1.061ms, respectively), and it went up significantly to

41.13ms when using the attack packet size of 1518 Bytes.

Summary Conclusions and Future Works

104

After using defenses on Windows Server 2012, the results showed that the performance of

Windows OS was increased. The Hybrid Method and Threshold Limit were the most

effective defenses against the UDP flood attack in all studies, whereas, the Software Firewall

and Network Load Balancing were the least effective defenses (IP Verify, and ACLs were

average defenses). The Hybrid Method and Threshold Limit could increase the TCP

throughput from 0.19 Mbps (no defense) to 86.30 Mbps. ACLs and IP Verify moderately

increased the TCP throughput to 18.48 Mbps and 15.67 Mbps, respectively. On the other

hand, Network Load Balancing and the Software Firewall only increased the TCP throughput

from 0.19 Mbps (no defense) to 0.28 Mbps, and 0.25 Mbps, respectively. The UDP

throughput result showed that the Hybrid Method and Threshold Limit significantly increased

the UDP throughput from 38.7 Mbps (no defense) to 86.5 Mbps, while ACLs and IP Verify

moderately increased the UDP throughput to 66.01 Mbps and 61.96 Mbps, respectively. On

the other hand, Network Load Balancing and the Software Firewall only increased the UDP

throughput from 38.7 Mbps (no defense) to 43.35 Mbps and 39.1 Mbps, respectively. The

RTT result showed that the Hybrid Method and Threshold Limit were the most effective

defenses in this study. Both solutions could decrease the average RTT from 27.38ms (no

defense) to 26.30ms and 26.39ms, respectively. ACLs and IP Verify could reduce the RTT to

26.67ms, and 26.74ms, respectively. On the other hand, Network Load Balancing increased

the RTT from 27.38ms (no defense) to 28.97ms. The packet loss result showed that the

Hybrid Method and Threshold Limit could significantly reduce the packet loss value from

56.1% (no defense) to 0.1%. IP Verify and ACLs moderately decreased the packet loss

value to 28.5%, and 23.1%, respectively. The most ineffective defenses in this study were

Network Load Balancing and the Software Firewall. Both defenses reduced the packet loss

values insignificantly from 56.1% (no defense) to 51.1%, and 55.2%, respectively. The

Hybrid Method and Threshold Limit could decrease the CPU utilization during the attack

from 24% (no defense) to 2%. ACLs and IP Verify could reduce the CPU utilization to 16%

and 18%, respectively. On the other hand, the Software Firewall consumed the CPU

utilization more than other defenses, which was 25%.

The results for Linux Ubuntu 13 showed that the performance of Linux OS reduced during

the UDP flood attack. The TCP throughput before the attack was constant at 94.1 Mbps, and

dropped significantly to 0.36 Mbps during the attack. The UDP throughput value before the

attack was constant at 95.7 Mbps and went down to 42.9 Mbps during the attack. The RTT

before the attack was 0.62ms, and increased to 26.42ms during the attack. The packet loss

result showed that there was no legitimate packet loss before the attack. During the attack

the packet loss value went up to 54.9%, 60.1%, 63.2%, and 74.2% when using the attack

packet sizes of 512 Bytes, 1024 Bytes, 1280 Bytes, and 1512 Bytes, respectively. The CPU

Summary Conclusions and Future Works

105

utilization result showed that the CPU usage of Linux OS before the attack was constant at

0.3%, and went up to 25% during the attack. The jitter value before the attack was 0.065ms

and went up significantly to 29.28ms. During the attack, the jitter values went up slightly

when using the attack packet sizes between 64, 128, and 256 Bytes (at 0.133, 0.128ms, and

0.139ms, respectively) and went up significantly to 29.28ms when using the attack packet

size of 1518 Bytes.

After using defenses on Linux Ubuntu 13, the results showed that the performance of Linux

OS was increased. Hybrid Method and Threshold Limit were the most effective defenses

against the UDP flood attack in most studies (except the RTT result) whereas the Software

Firewall was the least effective defense (IP Verify, and ACLs were average defenses). The

Hybrid Method and Threshold Limit could increase the TCP throughput from 0.36 Mbps (no

defense) to 94 Mbps. ACLs and IP Verify moderately increased the TCP throughput to 53.37

Mbps and 46.93 Mbps, respectively. On the other hand, the Software Firewall only increased

the TCP throughput from 0.19 Mbps (no defense) to 0.64 Mbps. The UDP throughput result

showed that the Hybrid Method and Threshold Limit could increase the UDP throughput from

43.04 Mbps (no defense) to 95.6 Mbps. ACLs, IP Verify, and Network Load Balancing

moderately increased the UDP throughput from 43.04 Mbps (no defense) to 68.55 Mbps,

65.35 Mbps, and 64.15 Mbps, respectively. On the other hand, the Software Firewall

insignificantly increased the UDP throughput from 43.04 Mbps (no defense) to 44.07 Mbps.

The RTT result showed that IP Verify was the most effective defense in this study, as it

reduced the average RTT from 26.42ms (no defense) to 25.60ms, while the Hybrid Method

reduced the RTT to 25.87ms. The Threshold Limit and ACLs could reduce the RTT from

26.42 (no defense) to 25.98ms, and 26.0ms, respectively. On the other hand, Network Load

Balancing increased the RTT from 26.42ms (no defense) to 26.48ms. The packet loss result

showed that the Hybrid Method and Threshold Limit could significantly reduce the packet

loss value from 54.9% (no defense) to 0.1%. IP Verify and ACLs moderately decreased the

packet loss value to 31.5% and 28.7%, respectively. The most ineffective defense in this

study was the Software Firewall which reduced the packet loss value insignificantly from

54.9% (no defense) to 54.1%. The CPU utilization result showed that the Hybrid Method and

Threshold Limit could decrease the CPU utilization during the attack from 25% (no defense)

to 2%. IP Verify and ACLs could reduce the CPU utilization to 8% and 13%, respectively. On

the other hand, the Software Firewall insignificantly reduced the CPU usage from 25% to

21%.

Summary Conclusions and Future Works

106

When comparing the performance between the two operating systems, it can be said that

Linux Ubuntu 13 could withstand the UDP flood attack better than Windows Server 2012.

The result showed that the TCP throughput before the attack on Linux platform was constant

at 94 Mbps, which was higher than Windows by 8 Mbps. During the attack, the throughput

values of both operating systems dropped significantly to 0.36 Mbps (Linux) and 0.19 Mbps

(Windows). The UDP throughput before the attack on Linux platform was constant at 95.7

Mbps, which was higher than Windows by 10 Mbps. During the attack, the UDP throughput

of Linux and Windows OS dropped moderately to 43.9 Mbps and 38.3 Mbps, respectively.

Without the attack, the average RTT of Windows platform was 0.99ms, which was higher

than Linux platform at 0.36ms. During the attack, the average RTT of Windows Server 2012

went up to 27.38ms, while the RTT of Linux Ubuntu 13 increased to 26.42ms. Windows

Server 2012 utilized the CPU resource before the attack at about 2%, while Linux Ubuntu 13

utilized the CPU resource at about 0.5%. During the attack, Linux Ubuntu 13 demonstrated

better performance in terms of stability; the CPU utilization remained steady at around

23.5%, while the CPU utilization of Windows Server 2012 fluctuated between 19% and 24%.

When comparing defenses between the two operating systems, it can be said that the

Hybrid Method and Threshold Limit were the most effective defenses against the UDP flood

attack for both operating systems, whereas the Software Firewall was the least effective

defense (IP Verify, and ACLs were average defenses). The Hybrid Method and Threshold

Limit defenses could increase the TCP throughput from 0.36 Mbps to 94 Mbps (for Linux

Ubuntu 13) and from 0.19 Mbps to 86.4 Mbps (for Windows Server 2012). When comparing

the UDP throughput, the Hybrid Method and Threshold Limit could increase the UDP

throughput from 43.04 Mbps to 95.6 Mbps (Linux Ubuntu 13), and from 38.7 Mbps to 86.5

Mbps (Windows Server 2012). It can be noted that throughputs increased more for Linux OS

when all defenses were implemented. The RTT results after using defenses showed that the

Hybrid Method was the most effective defense for Windows OS, and reduced the RTT from

27.38ms to 26.30ms, while IP Verify was the most effective defense for Linux OS, and

reduced the RTT from 26.42ms to 25.60ms. The Hybrid Method and Threshold Limit could

reduce the CPU usage of Windows OS from 24% (no defense) to 2%, and from 25% (no

defense) to 2% for Linux Ubuntu 13. Based on all the results, it can be concluded that Linux

Ubuntu 13 withstood the UDP flood attack better than Windows Server 2012, while the

Hybrid Method and Threshold Limit were the most effective defenses against the UDP flood

attack for both Windows and Linux platforms.

Summary Conclusions and Future Works

107

8.1 Future Work

This study provided a testbed study of the impact of a UDP flood attack on computers using

the latest versions of Windows and Linux platforms, namely, Window Server 2012 and Linux

Ubuntu 13. This study also compared the performance of six defense mechanisms that can

be adopted on networks to defend against the attack. The following is future studies that can

be done:

8.1.1 Different Types of DDoS Attacks and Defenses

There are other attacks and defenses that can be evaluated in a testbed environment. For

example, ARP Request Attacks, ICMP Flood Attacks, Smurf Attacks, and TCP SYS Flood

Attacks. These attacks can be evaluated on the latest version of operating systems such as

Windows 8.1, Linux Fedora 20, Linux GNOME 3.13, and Red Hat Enterprise Linux 7.

8.1.2 IPv6 Router Advertisement Attack and Defenses

We used a testbed based on IPv4 in this thesis, as IPv6 is being implemented; the testbed

can be set up using IPv6 and various attacks and defense mechanisms evaluated. For

example, IPv6 Router Advertisement (RA) Attack can be evaluated. The attack occurs when

the attacker floods the network with a large number of Router Advertisement packets and

forcing operating systems to create IPv6 addresses in response to every packet it receives.

This will cause 100% CPU usage on the victim computer, preventing to process other

application requests.

8.1.3 DDoS Attacks on Client with Mobility

A mobile phone can also be a target of DDoS attacks (Hossain, Atiquzzaman, & Ivancic,

2011). Further study can include impact of DDoS attacks and defenses on a mobile client.

Appendix

108

APPENDIX

Appendix A: Hardware Specifications

Router

Cisco 2811 Specification

Data Link Protocol Fast Ethernet and Ethernet

Management Protocol SNMP3

Network/Transport Protocol IPsec

Ports 2 router ports/9 switching ports

RAM DDR SDRAM 256MB/768MB (Maximal)

Flash Memory 64MB/256MB(Maximal)

Voltage Required AC 120/230V

Width 17.2 Inches

Height 1.8 Inches

Weight 14.1 lbs.

Features Firewall protection, VPN support, MPLS support,
hardware encryption, and Quality of Service (QoS)

 Table 1: Cisco 2811 Specifications

Switch

Cisco SG 200-08 Specification

Switching Capacity 13.6 Gigabits per second

CPU Memory 32 MB

Packet Buffer 4 Mb

Flash Memory 8 MB

Security 802.1X

Ports 8 Gigabit Ethernet

Standards Fast Ethernet and Ethernet

Dimensions (Weight x Height x
Depth)

4.45 x 1.06 x 5.12 Inches

Voltage Required 100V-240V

Features Port grouping, Quality of Service, VLAN, and Voice VLAN

 Table 2: Cisco SG 200-08 Specifications

References

109

REFERENCES

Anderson, T., Roscoe, T., & Wetherall, D. (2004). Preventing Internet Denial-of-Service with
Capabilities. ACM SIGCOMM Computer Communication Review, 34(1), 39-44. doi:
10.1145/972374.972382

Anstee, D., Bussiere, D., & Sockrider, G. (2012). Arbor Special Report: Worldwide
Infrastucture Security Report. Retrieved from
http://pages.arbornetworks.com/rs/arbor/images/wisr2012_en.pdf

Arora, K., Kumar, K., & Sachdeva, M. (2011. Characterizing DDoS Attack Distributions from
Emulation Based Experiments on DETER Testbed. Proceedings of the International
Conference on Advanced Computing, Networking and Security. (pp. 541-550). Surathkal,
India.

Backtrack. (2013). Introduction of BackTrack Linux. Retrieved from http://www.backtrack-
linux.org

Bai, Y., & Yang, Y. (2006, September). An Approximate Performance Analysis and
Measurement of the Equivalent Model of Parallel Queues for a Web Cluster with a Low
Rejection. Paper presented at the 14th IEEE International Conference on Networks,
Singapore. doi: 10.1109/ICON.2006.302659

BalanceNG. (2014). The Software Load Balancer. Retrieved from
http://www.inlab.de/balanceng/

Beethink. (2014). Anti DDoS Guardian: Protect Your Business from DDoS Attacks. Retrieved
from http://www.anti-ddos.net/

Bogdanoski, M., & Risteski, A. (2011). Wireless Network Behavior under ICMP Ping Flood
DoS Attack and Mitigation Techniques. Journal of Communication Networks and Information
Security, 3(1), 17-24. Retrieved from http://www.ijcnis.org

Bradner, S., & McQuaid, J. (1999). "Benchmarking Methodology for Network Interconnect
Devices", RFC 2544, March 1999.

Bruce, H. (2011). Packet Guide to Core Network Protocols, California, USA: O'Reilly Media.

Case, J., & Light, G. (2011). Emerging Methodologies in Engineering Education Research.
Journal of Engineering Education, 100(1), 186-210. doi: 10.1002/j.2168-
9830.2011.tb00008.x

Chaba, Y., Singh, Y., & Aneja, P. (2009). Performance Analysis of Disable IP Broadcast
Technique for Prevention of Flooding-Based DDoS Attack in MANET. Journal of Networks,
4(3), 178-183. doi: 10.4304/jnw.4.3.178-183

Chang, R. (2002). Defending Against Flooding-Based Distributed Denial-of-Service Attacks.
IEEE Communications Magazine, 40(10), 42-51. doi: 10.1109/MCOM.2002.1039856

Charvat, J. (2003). Project Management Methodologies: Selecting, Implementing and
Supporting Methodologies and Processes for Projects. New Jersey: John Wiley & Sons, Inc.

http://pages.arbornetworks.com/rs/arbor/images/wisr2012_en.pdf
http://www.backtrack-linux.org/
http://www.backtrack-linux.org/
http://www.anti-ddos.net/

References

110

Chen, Y., Hwang, K., & Ku, W. (2007, August). Distributed Change-Point Detection
of DDoS Attacks: Experimental Results on DETER Testbed. Paper presented at the
DETER Community Workshop on Cyber Security Experimentation and Test, Massachusetts.
Retrieved from http://www.dl.acm.org

Ciampa, M. (2012). Security+ Guide to Network Security Fundamentals (4 ed.). Baston, MA:
Course Technology.

Cisco. (2013a). Catalyst Switches for Microsoft Network Load Balancing Configuration
Example. Retrieved from
http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_example0

9186a0080a07203.shtml

Cisco. (2013b). Configuring Committed Access Rate. Retrieved from
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfcar_ps1835_TSD_Pro

ducts_Configuration_Guide_Chapter.html

Cisco. (2013c). Understanding Unicast Reverse Path Forwarding. Retrieved from
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

Cisco. (2013d). Access Control Lists: Overview and Guidelines. Retrieved from
http://www.cisco.com/c/en/us/td/docs/ios/12_2/security/configuration/guide/fsecur_c/scfacls.
html

David, D. (2007). Prevent IP spoofing with the Cisco IOS. Retrieved from
http://www.techrepublic.com/article/prevent-ip-spoofing-with-the-cisco-ios

Douligeris, C., & Mitrokotsa, A. (2004). DDoS Attacks and Defense Mechanisms:
Classification and State-of-the-Art. Journal of Computer and Telecommunications
Networking, 44(5), 643-666. doi: 10.1016/j.comnet.2003.10.003

Erickson, J. (2008). Hacking the Art of Exploitation (2 ed.). San Francisco, CA: William
Pollock.

Exist, E., & Postel, J. (1981). “Internet Standard”, RFC 791, September 1981.

Forouzan, A. (2000). TCP/IP: Protocol Suite (1 ed.). New Delhi, India: Tata McGraw-Hill
Publishing Company Limited.

Galtsev, A., & Sukhov, A. (2011, August). Network Attack Detection at Flow Level.
Paper presented at the 4th Conference on Smart Spaces, Petersburg.
doi:10.1007/978-3-642-22875-9_30

Garber, L. (2000). Denial-of-service Attacks Rip the Internet. IEEE Computer Society 33(4),
12-17. doi: 10.1109/MC.2000.839316

Gates, C., Collins, M., Duggan, M., Kompanek, A., & Thomas, K. (2004, November).
More Netflow Tools: For Performance and Security. Paper presented at the
Conference on System Administration, Atlanta. Retrieved from http://www.dl.acm.org

Gupta, B., Joshi, R., & Misra, M. (2010). Distributed Denial of Service Prevention
Techniques. Journal of Computer and Electrical Engineering, 2(2), 268-276.
Hping. (2014). Hping3 Security Tool. Retrieved from http://www.hping.org

http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_example09186a0080a07203.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_example09186a0080a07203.shtml
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfcar_ps1835_TSD_Products_Configuration_Guide_Chapter.html
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfcar_ps1835_TSD_Products_Configuration_Guide_Chapter.html
http://www.hping.org/

References

111

Hossain, M., Atiquzzaman, M., & Ivancic, W. (2011, March). Security Vulnerabilities and
Protection Mechanisms of Mobility Management Protocols. Paper presented at the IEEE
Aerospace Conference, Big Sky, Montana. doi: 10.1109/AERO.2011.5747350

Hutt, A., Hoyt, D., & Bosworth, S. (2002). Computer Security Handbook (4 ed.). New York:
John Wiley & Sons, Inc.

Kaur, D., Sachdeva, M., & Kumar, K. (2012). Study of DDoS Attacks Using DETER Testbed.
Journal of Computing and Business Research, 3(2), 1-13.

Kavisankar, L., & Chellappan, C. (2011). CNoA: Challenging Number Approach for
Uncovering TCP SYN Flooding Using SYN Spoofing Attack. Journal of Network Security and
Its Applications, 3(5), 191-202. doi:10.5121/ijnsa.2011.3515

Kolahi, S.S., Li, P. (2011). Evaluating IPv6 in Peer-to-Peer 802.11n Wireless LANs. IEEE
Internet Computing, 15(4), 70-74. doi: 10.1109/MIC.2011.89

Kolahi, S.S, Rico, C., & Hong, C. (2013, November). Bandwidth-IPSec Security
Trade-off in IPv4 and IPv6 in Windows 7 Environment. Paper presented at the Second
International Conference on Future Generation Communication Technology, London.
doi: 10.1109/FGCT.2013.6767214

Kumar, S. (2007, July). Smurf-based Distributed Denial of Service (DDoS) Attack
Amplification in Internet. Paper presented at the International Conference on Internet
Monitoring and Protection, San Jose, CA. doi: 10.1109/ICIMP.2007.42

Kumar, S., Azad, M., Gomez, O., & Valdez, R. (2006, February). Can Microsoft’s Service
Pack2 (SP2) Security Software Prevent SMURF Attacks. Paper presented at the Advanced
International Conference on Telecommunications. doi: 10.1109/AICT- ICIW.2006.60

Kumar, S., & Gomez, O (2010). Denial of Service Due to Direct and Indirect ARP Storm
Attacks in LAN Environment. Journal of Information Security, 1(2), 88-94. doi:
10.4236/jis.2010.12010

Kurose, J., & Ross, W. (2010). Computer Networking: A Top-Down Approach (5 ed.).
Boston, MA: Pearson Education.

Lad, D., Alghalbi, A., & Ahmed, S. (2013). “Comparison of Various Defense Mechanisms
Against Distributed Denial of Service Attacks”. 1st Semester Project Report. Dept of
Computing, Unitec Institute of Technology.

Le, A., Boutaba, R., & Shaer, E. (2008, September). Correlation-Based Load Balancing for
Network Intrusion Detection and Prevention Systems. Paper presented at the 4th
International Conference on Security and Privacy in Communication Networks, Istanbul,
Turkey. doi: 10.1145/1460877.1460880

Lemon, J. (2002, February). Resisting SYN Flooding DoS Attacks with a SYN Cache. Paper
presented at the BSD Conference 2002 on BSD Conference, California. Retrieved from
http://www.dl.acm.org

Loshin, P. (2003). TCP/IP Clearly Explained (4 ed.). San Francisco, California: Elsevier
Science.

References

112

Lu, W., Gu, W., & Yu, S. (2009). One-Way Queuing Delay Measurement and Its Application
on Detecting DDoS Attack. Journal of Network and Computer Applications, 32(2), 367-376.
doi: 10.1016/j.jnca.2008.02.018

Marti, P., Fuertes, J. M., Fohler, G., & Ramamritham, K. (2001, December). Jitter
Compensation for Real-Time Control Systems. Paper presented at the 22nd IEEE Real-Time
Systems Symposium. doi: 10.1109/REAL.2001.990594

Masoud, B., Shahram, J., & Gholam, S. (2012). Defense against SYN-Flood Denial of
Servial of Service Attacks Based on LeamingAutomata. Journal of Computer Science,
9(3), 514-520.

McCabe, J. (2010). Network Analysis, Architecture, and Design (3 ed.). Burlington, MA
Elsevier Science.

Microsoft. (2014). Network Load Balancing Technical Overview. Retrieved from
http://technet.microsoft.com/en-us/library/bb742455.aspx

Mirkovic, J., Hussain, A., Fahmy, S., Reiher, P., & Thomas, R. (2009). Accurately Measuring
Denial of Service in Simulation and Testbed Experiments. IEEE Transactions, 6(2), 81-95.
doi: 10.1109/TDSC.2008.73

Mirkovic, J., Sonia, F., Reiher, P., & Thomas, K. (2009, March). How to Test DoS Defenses.
Paper presented at the Cybersecurity Applications & Technology Conference For
Homeland Security, Washington. doi: 10.1109/CATCH.2009.23

Mohd, G., & Rosilah, H. (2011). Flooding Distributed Denial of Service Attacks-A Review.
Journal of Computer Science, 7(8), 1218-1223. Retrieved from http://www.thescipub.com

Mohd, Z., Idris, Y., Hussain, K., Stiawan, D., & Awan, K. (2011, November).
Protocol Share Based Traffic Rate Analysis (PSBTRA) for UDP Bandwidth Attack. Paper
presented at the International Conference on Informatics Engineering and Information
Science, Kuala Lumpur. doi: 10.1007/978-3-642-25327-0_24

Muijs, D. (2011). Doing Quantitative Research in Education with SPSS (2 ed.). London:
SAGE Publications Ltd.

Openmaniak. (2009). Iperf. Retrieved from http://openmaniak.com/iperf.php

Orebaugh, A., Ramirez, G., Rurke, J., Morris, G., Pesce, L., & Wright, J. (2007). Wireshark &
Ethereal Network Protocol Analyzer Toolkit. Massachusetts: Syngress Publishing, Inc.

Oriyano, S., & Gregg, M. (2010). Hacker Techniques, Tools, and Incident Handling.
Massachusetts: Jones & Bartlett Learning.

Pack, G., Yoon, J., Collins, E., & Estan, C. (2006, August). On Filtering of DDoS
Attacks Based on Source Address Prefixes. Paper presented at the Securecomm and
Workshops, Baltimore. doi: 10.1109/SECCOMW.2006.359537

Ping over a TCP Connection (2013). Retrieved from
http://www.elifulkerson.com/projects/tcping.php

http://www.elifulkerson.com/projects/tcping.php

References

113

Rahman, J., Saha, S., & Hasan, F. (2012, December). A New Congestion Control Algorithm
for Datagram Congestion Control Protocol (DCCP) Based Real-Time Multimedia
Applications. Paper presented at the International Conference on Electrical and
Computer Engineering, Dhaka. doi: 10.1109/ICECE.2012.6471605

Rajesh, S. (2013). Protection from Application Layer DDoS Attacks for Popular Websites.
International Journal of Computer and Electrical Engineering, 5(6), 555-558. doi:
10.7763/IJCEE.2013.V5.771

Rao, S. (2011). Denial of Service Attacks and Mitigation Techniques: Real Time
Implementation with Detailed Analysis. Retrieved from http://www.sans.org

Rui, X., Li, M., & Ling, Z. (2009, August). Defending against UDP Flooding by
Negative Selection Algorithm Based on Eigenvalue Sets. Paper presented at the
International Conference on Information Assurance and Security, Xi'an. doi:
10.1109/IAS.2009.280

Shrivastava, G., Sharma, K., & Rai, S. (2010, December). The Detection & Defense of DoS
& DDoS Attack: A Technical Overview. Paper presented at the International Conference on
Computer Engineering and Technology, New Delhi. Retrieved from http://jietjodhpur.com

Singh, A., & Juneja, D. (2010). Agent Based Preventive Measure for UDP Flood Attack in
DDoS Attacks. International Journal of Engineering Science and Technology, 2(8), 3405-
3411. Retrieved from http://www.ijest.info

Sosinsky, B. (2009). Networking Bible. Indiana: Wiley Publishing Inc.

Stephen, M., & Ruby, B. (2004, September). Distributed Denial of Service: Taxonomies
of Attacks, Tools and Countermeasures. Paper presented at the 17th International
Conference on Parallel and Distributed Computing Systems, New Jersey. Retrieved from
http://palms.ee.princeton.edu

Subramani, R. (2011). Denial of Service Attacks and Mitigation Techniques: Real Time
Implementation with Detailed Analysis. Retrieved from
http://www.sans.org/reading-room/whitepapers/detection/denial-service-attacks-mitigation-
techniques-real-time-implementation-detailed-analysi-33764?show=denial-service-attacks-
mitigation-techniques-real-time-implementation-detailed-analysi-33764&cat=detection

Vidya, S., & Bhaskaran, R. (2011). ARP Storm Detection and Prevention Measures.
International Journal of Computer Science Issues, 8(2), 456-460. Retrieved from
http://www.ijcsi.org

Wang, J. (2009). Computer Network Security Theory and Practice. Lowell, Massachusetts:
Springer.

Webstress. (2014). Website Performance, Stress, and Load Testing. Retrieved from
http://www.paessler.com/webstress

Wireshark. (2014). Introduction of Wireshark. Retrieved from http://www.wireshark.org

Xie, Y., & Yu, S. (2009). Monitoring the Application-Layer DDoS Attacks for Popular
Websites. IEEE Transactions on Networking, 17(1), 15-25. doi: 10.1109/TNET.2008.925628

http://www.sans.org/
http://jietjodhpur.com/
http://www.paessler.com/webstress
http://www.wireshark.org/

References

114

Yaar, A., Perrig, A., & Song, D. (2004, May). SIFF: A Stateless Internet Flow Filter
to Mitigate DDoS Flooding Attacks. Paper presented at the IEEE Symposium on Security
and Privacy. doi: 10.1109/SECPRI.2004.1301320

York, D. (2010). Seven Deadliest Unified Communications Attacks. Massachusetts:
Syngress Publishing Inc.

